首页 > 代码库 > Hdu 1394 Minimum Inversion Number(线段树或树状数组)

Hdu 1394 Minimum Inversion Number(线段树或树状数组)

Minimum Inversion Number

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 11981    Accepted Submission(s): 7321


Problem Description
The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.

For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:

a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)

You are asked to write a program to find the minimum inversion number out of the above sequences.
 

Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
 

Output
For each case, output the minimum inversion number on a single line.
 

Sample Input
10 1 3 6 9 0 8 5 7 4 2
 

Sample Output
16
 

Author
CHEN, Gaoli
 

Source
ZOJ Monthly, January 2003
 

Recommend
Ignatius.L   |   We have carefully selected several similar problems for you:  1540 1542 1255 1828 1541 
 



题意:

求最小逆序数。进行n次,每次把第一个数放到最后面。


题解:

求解一组逆序数,之后ans=ans+n-a[i]*2+1;求最小值。


关于逆序数思路(大神神讲解):http://www.cnblogs.com/shenshuyang/archive/2012/07/14/2591859.html

. 离散之后,怎么使用离散后的结果数组来进行树状数组操作,计算出逆序数?

    如果数据不是很大, 可以一个个插入到树状数组中,

    每插入一个数, 统计比他小的数的个数,

    对应的逆序为 i- getsum( aa[i] ),

    其中 i 为当前已经插入的数的个数,

    getsum( aa[i] )为比 aa[i] 小的数的个数,

    i- sum( aa[i] ) 即比 aa[i] 大的个数, 即逆序的个数

    但如果数据比较大,就必须采用离散化方法

    假设输入的数组是9 1 0 5 4, 离散后的结果aa[] = {5,2,1,4,3};

在离散结果中间结果的基础上,那么其计算逆序数的过程是这么一个过程。

1,输入5,   调用upDate(5, 1),把第5位设置为1

1 2 3 4 5

0 0 0 0 1

计算1-5上比5小的数字存在么? 这里用到了树状数组的getSum(5) = 1操作,

现在用输入的下标1 - getSum(5) = 0 就可以得到对于5的逆序数为0。

2. 输入2, 调用upDate(2, 1),把第2位设置为1

1 2 3 4 5

0 1 0 0 1

计算1-2上比2小的数字存在么? 这里用到了树状数组的getSum(2) = 1操作,

现在用输入的下标2 - getSum(2) = 1 就可以得到对于2的逆序数为1。

3. 输入1, 调用upDate(1, 1),把第1位设置为1

1 2 3 4 5

1 1 0 0 1

计算1-1上比1小的数字存在么? 这里用到了树状数组的getSum(1) = 1操作,

现在用输入的下标 3 - getSum(1) = 2 就可以得到对于1的逆序数为2。

4. 输入4, 调用upDate(4, 1),把第5位设置为1

1 2 3 4 5

1 1 0 1 1

计算1-4上比4小的数字存在么? 这里用到了树状数组的getSum(4) = 3操作,

现在用输入的下标4 - getSum(4) = 1 就可以得到对于4的逆序数为1。

5. 输入3, 调用upDate(3, 1),把第3位设置为1

1 2 3 4 5

1 1 1 1 1

计算1-3上比3小的数字存在么? 这里用到了树状数组的getSum(3) = 3操作,

现在用输入的下标5 - getSum(3) = 2 就可以得到对于3的逆序数为2。

6. 0+1+2+1+2 = 6 这就是最后的逆序数

分析一下时间复杂度,首先用到快速排序,时间复杂度为O(NlogN),



CODE:

线段树:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<string>
#include<algorithm>
#include<cstdlib>
#include<set>
#include<queue>
#include<stack>
#include<vector>
#include<map>

#define N 5010
#define Mod 10000007
#define lson l,mid,idx<<1
#define rson mid+1,r,idx<<1|1
#define lc idx<<1
#define rc idx<<1|1
const double EPS = 1e-11;
const double PI = acos ( -1.0 );
const double E = 2.718281828;
typedef long long ll;

const int INF = 1000010;

using namespace std;

int tree[N<<2],n,a[N];

void build(int l,int r,int idx)
{
    tree[idx]=0;
    if(l==r)
        return;
    int mid=(l+r)>>1;
    build(lson);
    build(rson);
}

void update(int l,int r,int idx,int x)
{
    if(l==r)
    {
        tree[idx]++;
        return;
    }
    int mid=(l+r)>>1;
    if(x<=mid)
        update(lson,x);
    else
        update(rson,x);
    tree[idx]=tree[rc]+tree[lc];
}

int query(int l,int r,int idx,int x,int y)
{
    if(l>=x&&y>=r)
    {
        return tree[idx];
    }
    int ans=0;
    int mid=(l+r)>>1;
    if(x<=mid)
        ans+=query(lson,x,y);
    if(y>mid)
        ans+=query(rson,x,y);
    return ans;
}

int main()
{
    while(cin>>n)
    {
        build(1,n,1);
        for(int i=1; i<=n; i++)
        {
            scanf("%d",&a[i]);
            a[i]++;
        }
        int ans=0;
        for(int i=1; i<=n; i++)
        {

            ans+=query(1,n,1,a[i]+1,n);
            update(1,n,1,a[i]);
        }
        int Min=ans;
        for(int i=1;i<=n;i++)
        {
            ans+=n-2*a[i]+1;
            Min=min(Min,ans);
        }
        cout<<Min<<endl;
    }
    return 0;
}


树状数组:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<string>
#include<algorithm>
#include<cstdlib>
#include<set>
#include<queue>
#include<stack>
#include<vector>
#include<map>

#define N 100010
#define Mod 10000007
#define lson l,mid,idx<<1
#define rson mid+1,r,idx<<1|1
#define lc idx<<1
#define rc idx<<1|1
const double EPS = 1e-11;
const double PI = acos ( -1.0 );
const double E = 2.718281828;
typedef long long ll;

const int INF = 1000010;

using namespace std;

int sum[5005];
int bit[5050],a[5050];
int n;

int getsum(int i)
{
    int s=0;
    while(i>0)
    {
        s+=bit[i];
        i-=i&-i;
    }
    return s;
}

void add(int i,int x)//更新
{
    while(i<=n)
    {
        bit[i]+=x;
        i+=i&-i;
    }
}

int main()
{
    while(cin>>n)
    {
        memset(bit,0,sizeof bit);
        for(int i=1; i<=n; i++)
        {
            scanf("%d",&a[i]);
            a[i]++;
        }
        int ans=0;
        for(int i=1; i<=n; i++)
        {
            add(a[i],1);
            sum[i]=i-getsum(a[i]);
            ans+=sum[i];
        }
        int x=0;
        int Min=ans;
        for(int i=1; i<=n; i++)
        {
            ans+=n-a[i]*2+1;
            Min=min(Min,ans);
        }
        cout<<Min<<endl;
    }
    return 0;
}


Hdu 1394 Minimum Inversion Number(线段树或树状数组)