首页 > 代码库 > [BZOJ 2724] [Violet 6] 蒲公英 【分块】

[BZOJ 2724] [Violet 6] 蒲公英 【分块】

题目链接:BZOJ - 2724

 

题目分析

这道题和 BZOJ-2821 作诗 那道题几乎是一样的,就是直接分块,每块大小 sqrt(n) ,然后将数字按照数值为第一关键字,位置为第二关键字排序,方便之后二分查找某个值在某个区间内出现的次数。

预处理出 f[i][j] 即从第 i 块到第 j 块的答案。

对于每个询问,中间的整块直接用预处理出的,两端的 sqrtn 级别的数暴力做,用二分查找它们出现的次数。

每次询问的复杂度是 sqrtn * logn 。

 

注意:写代码的时候又出现了给 sort 写的 Cmp() 不保证双向一致的错误!!Warning!注意代码中的 Cmp_Num() 函数,即使在不需要第二关键字的情况下,由于 Num 可能会有相同的,也必须加第二关键字以保证比较结果双向一致!

 

代码

#include <iostream>#include <cstdlib>#include <cstdio>#include <algorithm>#include <cstring>#include <cmath>using namespace std;inline void Read(int &Num) {	char c; c = getchar();	while (c < ‘0‘ || c > ‘9‘) c = getchar();	Num = c - ‘0‘; c = getchar();	while (c >= ‘0‘ && c <= ‘9‘) {		Num = Num * 10 + c - ‘0‘;		c = getchar();	}}const int MaxN = 40000 + 5, MaxBlk = 200 + 5;int n, m, BlkSize, TotBlk;int A[MaxN], TL[MaxN], T[MaxN], Cnt[MaxN], L[MaxBlk], R[MaxBlk], First[MaxN], Last[MaxN];int f[MaxBlk][MaxBlk], g[MaxBlk][MaxBlk];struct ES{	int Pos, Num, v;} E[MaxN];inline bool Cmp_Num(ES e1, ES e2) {	if (e1.Num == e2.Num) return e1.Pos < e2.Pos;	return e1.Num < e2.Num;}inline bool Cmp_Pos(ES e1, ES e2) {return e1.Pos < e2.Pos;}int GetNum(int Num, int x, int y) {	if (x > y || x > E[Last[Num]].Pos || y < E[First[Num]].Pos) return 0;	int l, r, mid, p1, p2;	l = First[Num]; r = Last[Num];	while (l <= r) {		mid = (l + r) >> 1;		if (E[mid].Pos >= x) {			p1 = mid;			r = mid - 1;		}		else l = mid + 1;	}	l = First[Num]; r = Last[Num];	while (l <= r) {		mid = (l + r) >> 1;		if (E[mid].Pos <= y) {			p2 = mid;			l = mid + 1;		}		else r = mid - 1;	}	return p2 - p1 + 1;}int main() {	Read(n); Read(m);	for (int i = 1; i <= n; ++i) {		Read(E[i].Num);		E[i].Pos = i;	}	sort(E + 1, E + n + 1, Cmp_Num);	int v_Index = 0;	for (int i = 1; i <= n; ++i) {		if (i == 1 || E[i].Num > E[i - 1].Num) ++v_Index;		E[i].v = v_Index;		TL[v_Index] = E[i].Num;	}	sort(E + 1, E + n + 1, Cmp_Pos);	for (int i = 1; i <= n; ++i) A[i] = E[i].v;	sort(E + 1, E + n + 1, Cmp_Num);	for (int i = 1; i <= n; ++i) {		if (First[E[i].v] == 0) First[E[i].v] = i;		Last[E[i].v] = i;	}	BlkSize = (int)sqrt((double)n);	TotBlk = (n - 1) / BlkSize + 1;	for (int i = 1; i <= TotBlk; ++i) {		L[i] = (i - 1) * BlkSize + 1;		R[i] = i * BlkSize;	}	R[TotBlk] = n;	for (int i = 1; i <= TotBlk; ++i) {		for (int j = 1; j <= n; ++j) Cnt[j] = 0;		f[i][i - 1] = 0; g[i][i - 1] = 0;		for (int j = i; j <= TotBlk; ++j) {			f[i][j] = f[i][j - 1];			g[i][j] = g[i][j - 1];				for (int k = L[j]; k <= R[j]; ++k) {				++Cnt[A[k]];				if (Cnt[A[k]] > f[i][j] || (Cnt[A[k]] == f[i][j] && A[k] < g[i][j])) {					f[i][j] = Cnt[A[k]]; g[i][j] = A[k];				}			}		}	}	memset(Cnt, 0, sizeof(Cnt));	for (int i = 1; i <= n; ++i) T[i] = -1;	int l, r, x, y, Ct, Ans, Cu;	Ans = 0;	for (int i = 1; i <= m; ++i) {		Read(l); Read(r);		l = (l + Ans - 1) % n + 1; r = (r + Ans - 1) % n + 1;		if (l > r) swap(l, r);		x = (l - 1) / BlkSize + 1; if (l != L[x]) ++x;		y = (r - 1) / BlkSize + 1; if (r != R[y]) --y;		if (x > y) {					Ct = 0; Ans = 0;			for (int j = l; j <= r; ++j) {				++Cnt[A[j]];				if (Cnt[A[j]] > Ct || (Cnt[A[j]] == Ct && A[j] < Ans)) {					Ct = Cnt[A[j]]; Ans = A[j];				}			}			for (int j = l; j <= r; ++j) --Cnt[A[j]];		}		else {			Ct = f[x][y]; Ans = g[x][y];			for (int j = l; j < L[x]; ++j) {				++Cnt[A[j]];				if (T[A[j]] == -1) T[A[j]] = GetNum(A[j], L[x], R[y]);				Cu = Cnt[A[j]] + T[A[j]];				if (Cu > Ct || (Cu == Ct && A[j] < Ans)) {					Ct = Cu; Ans = A[j];				}			}			for (int j = r; j > R[y]; --j) {				++Cnt[A[j]];				if (T[A[j]] == -1) T[A[j]] = GetNum(A[j], L[x], R[y]);				Cu = Cnt[A[j]] + T[A[j]];				if (Cu > Ct || (Cu == Ct && A[j] < Ans)) {					Ct = Cu; Ans = A[j];				}			}			for (int j = l; j < L[x]; ++j) {--Cnt[A[j]]; T[A[j]] = -1;}			for (int j = r; j > R[y]; --j) {--Cnt[A[j]]; T[A[j]] = -1;}		}		Ans = TL[Ans];		printf("%d\n", Ans);	}	return 0;}

  

[BZOJ 2724] [Violet 6] 蒲公英 【分块】