首页 > 代码库 > BZOJ 3509 分块FFT
BZOJ 3509 分块FFT
思路:
跟今年WC的题几乎一样 (但是这道题有重 不能用bitset水过去)
正解:分块FFT
http://blog.csdn.net/geotcbrl/article/details/50636401 from GEOTCBRL
可以看看hgr的题解..写得很详细
//By SiriusRen #include <cmath> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; const double pi=acos(-1); const int N=100050; int n,nn,num[N],R[N],L,Block,block[N],cnt[50][N]; long long ans; struct Complex{ double x,y;Complex(){} Complex(double X,double Y){x=X,y=Y;} }A[N],B[N],C[N]; Complex operator+(Complex a,Complex b){return Complex(a.x+b.x,a.y+b.y);} Complex operator-(Complex a,Complex b){return Complex(a.x-b.x,a.y-b.y);} Complex operator*(Complex a,Complex b){return Complex(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);} Complex operator/(Complex a,int b){return Complex(a.x/b,a.y/b);} void FFT(Complex *a,int f){ for(int i=0;i<n;i++)if(i<R[i])swap(a[i],a[R[i]]); for(int i=1;i<n;i<<=1){ Complex wn=Complex(cos(pi/i),f*sin(pi/i)); for(int j=0;j<n;j+=(i<<1)){ Complex w=Complex(1,0); for(int k=0;k<i;k++,w=w*wn){ Complex x=a[j+k],y=w*a[j+k+i]; a[j+k]=x+y,a[j+k+i]=x-y; } } } if(!~f)for(int i=0;i<n;i++)a[i]=a[i]/n; } int main(){ scanf("%d",&nn); for(int i=1;i<=nn;i++)scanf("%d",&num[i]); for(n=1;n<=60000;n<<=1)L++; for(int i=0;i<n;i++)R[i]=(R[i>>1]>>1)|((i&1)<<(L-1)); Block=min(int(sqrt(nn)*10),nn); for(int i=1;i<=nn;i++)block[i]=(i-1)/Block+1; for(int i=1;i<=nn;i++)cnt[block[i]][num[i]]++; for(int I=1;I<=block[nn];I++){ int L=lower_bound(block+1,block+1+nn,I)-block,R=upper_bound(block+1,block+1+nn,I)-block-1; for(int j=L;j<=R;j++){ cnt[I][num[j]]--; for(int i=L;i<j;i++) if(num[j]*2-num[i]>=0)ans+=cnt[I][num[j]*2-num[i]]; } } for(int i=1;i<=nn;i++)cnt[0][num[i]]++; for(int I=1;I<=block[nn];I++){ int L=lower_bound(block+1,block+1+nn,I)-block,R=upper_bound(block+1,block+1+nn,I)-block-1; for(int i=L;i<=R;i++)cnt[0][num[i]]--; for(int j=L;j<=R;j++) for(int i=L;i<j;i++) if(num[j]*2-num[i]>=0)ans+=cnt[0][num[j]*2-num[i]]; } for(int i=1;i<=nn;i++)cnt[0][num[i]]++; for(int I=block[nn];I;I--){ int L=lower_bound(block+1,block+1+nn,I)-block,R=upper_bound(block+1,block+1+nn,I)-block-1; for(int i=L;i<=R;i++)cnt[0][num[i]]--; for(int k=L;k<=R;k++) for(int j=k-1;j>=L;j--) if(num[j]*2-num[k]>=0)ans+=cnt[0][num[j]*2-num[k]]; } for(int I=1;I<=block[nn];I++){ for(int i=0;i<n;i++)A[i].x=A[i].y=B[i].x=B[i].y=0; int L=lower_bound(block+1,block+1+nn,I)-block,R=upper_bound(block+1,block+1+nn,I)-block-1; for(int i=1;i<L;i++)A[num[i]].x++; for(int i=R+1;i<=nn;i++)B[num[i]].x++; FFT(A,1),FFT(B,1); for(int i=0;i<n;i++)C[i]=A[i]*B[i]; FFT(C,-1); for(int i=L;i<=R;i++)ans+=(long long)(C[num[i]*2].x+0.2); } printf("%lld\n",ans); }
BZOJ 3509 分块FFT
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。