首页 > 代码库 > Hadoop-5、排序(Combiner泛谈)
Hadoop-5、排序(Combiner泛谈)
一、Combiner作用
1、combiner最基本是实现本地key的聚合,对map输出的key排序,value进行迭代。如下所示:
map: (K1, V1) → list(K2, V2)
combine: (K2, list(V2)) → list(K2, V2)
reduce: (K2, list(V2)) → list(K3, V3)
2、combiner还具有类似本地的reduce功能.
例如hadoop自带的wordcount的例子和找出value的最大值的程序,combiner和reduce完全一致。如下所示:
map: (K1, V1) → list(K2, V2)
combine: (K2, list(V2)) → list(K3, V3)
reduce: (K3, list(V3)) → list(K4, V4)
3、如果不用combiner,那么,所有的结果都是reduce完成,效率会相对低下。使用combiner,先完成的map会在本地聚合,提升速度。
4、对于hadoop自带的wordcount的例子,value就是一个叠加的数字,所以map一结束就可以进行reduce的value叠加,而不必要等到所有的map结束再去进行reduce的value叠加。
二、总结
1、combiner使用的合适,可以在满足业务的情况下提升job的速度,如果不合适,则将导致输出的结果不正确。
本程序不能是用combiner,不然出错。
import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.util.GenericOptionsParser; public class Sort { public static class Map extends Mapper<Object,Text,IntWritable,IntWritable>{ private static IntWritable num = new IntWritable(); public void map(Object key,Text value,Context context) throws IOException, InterruptedException{ String line = value.toString(); num.set(Integer.parseInt(line)); context.write(num, new IntWritable(1)); } } public static class Reduce extends Reducer<IntWritable,IntWritable,IntWritable,IntWritable>{ private static IntWritable count = new IntWritable(0); public void reduce(IntWritable key,Iterable<IntWritable> value,Context context) throws IOException, InterruptedException{ for(IntWritable val : value){ count = new IntWritable(count.get()+1); context.write(count,key); } } } public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException{ Configuration conf = new Configuration(); conf.addResource(new Path("/usr/hadoop-1.0.3/conf/core-site.xml")); String[] arg = new GenericOptionsParser(conf,args).getRemainingArgs(); Job job = new Job(conf,"Sort"); job.setJarByClass(Sort.class); job.setMapperClass(Map.class); job.setReducerClass(Reduce.class); job.setOutputKeyClass(IntWritable.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(arg[0])); FileOutputFormat.setOutputPath(job, new Path(arg[1])); System.exit(job.waitForCompletion(true) ? 0 : 1); } }
File1
?
1 2 3 4 5 6 7 | 2 32 654 32 15 756 65223 |
File2
?
1 2 3 4 | 5956 22 650 92 |
File3
?
1 2 3 | 26 54 6 |
结果:
?
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | 1 2 2 6 3 15 4 22 5 26 6 32 7 32 8 54 9 92 10 650 11 654 12 756 13 5956 14 65223 |
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。