首页 > 代码库 > poj 3026 Borg Maze 最小生成树+bfs prim算法
poj 3026 Borg Maze 最小生成树+bfs prim算法
Borg Maze
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 8905 | Accepted: 2969 |
Description
The Borg is an immensely powerful race of enhanced humanoids from the delta quadrant of the galaxy. The Borg collective is the term used to describe the group consciousness of the Borg civilization. Each Borg individual is linked to the collective by a sophisticated subspace network that insures each member is given constant supervision and guidance.
Your task is to help the Borg (yes, really) by developing a program which helps the Borg to estimate the minimal cost of scanning a maze for the assimilation of aliens hiding in the maze, by moving in north, west, east, and south steps. The tricky thing is that the beginning of the search is conducted by a large group of over 100 individuals. Whenever an alien is assimilated, or at the beginning of the search, the group may split in two or more groups (but their consciousness is still collective.). The cost of searching a maze is definied as the total distance covered by all the groups involved in the search together. That is, if the original group walks five steps, then splits into two groups each walking three steps, the total distance is 11=5+3+3.
Your task is to help the Borg (yes, really) by developing a program which helps the Borg to estimate the minimal cost of scanning a maze for the assimilation of aliens hiding in the maze, by moving in north, west, east, and south steps. The tricky thing is that the beginning of the search is conducted by a large group of over 100 individuals. Whenever an alien is assimilated, or at the beginning of the search, the group may split in two or more groups (but their consciousness is still collective.). The cost of searching a maze is definied as the total distance covered by all the groups involved in the search together. That is, if the original group walks five steps, then splits into two groups each walking three steps, the total distance is 11=5+3+3.
Input
On the first line of input there is one integer, N <= 50, giving the number of test cases in the input. Each test case starts with a line containg two integers x, y such that 1 <= x,y <= 50. After this, y lines follow, each which x characters. For each character, a space `` ‘‘ stands for an open space, a hash mark ``#‘‘ stands for an obstructing wall, the capital letter ``A‘‘ stand for an alien, and the capital letter ``S‘‘ stands for the start of the search. The perimeter of the maze is always closed, i.e., there is no way to get out from the coordinate of the ``S‘‘. At most 100 aliens are present in the maze, and everyone is reachable.
Output
For every test case, output one line containing the minimal cost of a succesful search of the maze leaving no aliens alive.
Sample Input
26 5##### #A#A### # A##S ####### 7 7##### #AAA#### A## S #### ##AAA########
Sample Output
811
#include<cstdio>#include <cstring>#include <queue>#include <assert.h>using namespace std;char maz[202][202];bool vis[202][202];int d[201][202][202];int alien[201][2];int numa;int x,y;int sx,sy;int e[202][202];typedef pair<int,int> P;queue<P> que;const int dx[4]={0,0,-1,1};const int dy[4]={-1,1,0,0};bool used[101];void bfs(){ sx=sy=-1; numa=0; memset(vis,0,sizeof(vis)); for(int i=0;i<y;i++){ for(int j=0;j<x;j++){ if(maz[i][j]==‘S‘){ sx=j; sy=i; break; } } } assert(sx!=-1&&sy!=-1); vis[sy][sx]=true; d[0][sy][sx]=0; alien[numa][0]=sy; alien[numa++][1]=sx; que.push(P(sy,sx)); while(!que.empty()){ P p=que.front(); que.pop(); for(int i=0;i<4;i++){ int ny=p.first+dy[i]; int nx=p.second+dx[i]; if(nx>=0&&nx<x&&ny>=0&&ny<y&&!vis[ny][nx]&&maz[ny][nx]!=‘#‘){ d[0][ny][nx]=d[0][p.first][p.second]+1; vis[ny][nx]=true; que.push(P(ny,nx)); if(maz[ny][nx]==‘A‘){ alien[numa][0]=ny; alien[numa++][1]=nx; } } } } for(int ai=1;ai<numa;ai++){ memset(vis,0,sizeof(vis)); int ay=alien[ai][0],ax=alien[ai][1]; d[ai][ay][ax]=0; que.push(P(ay,ax)); vis[ay][ax]=true; while(!que.empty()){ P p=que.front(); que.pop(); for(int i=0;i<4;i++){ int ny=p.first+dy[i]; int nx=p.second+dx[i]; if(nx>=0&&nx<x&&ny>=0&&ny<y&&!vis[ny][nx]&&maz[ny][nx]!=‘#‘){ d[ai][ny][nx]=d[ai][p.first][p.second]+1; vis[ny][nx]=true; que.push(P(ny,nx)); } } } } for(int i=0;i<numa;i++){ //int ay=alien[i][0],ax=alien[i][1]; for(int j=0;j<numa;j++){ int ay1=alien[j][0],ax1=alien[j][1]; e[i][j]=d[i][ay1][ax1]; } }}priority_queue <P,vector<P>, greater <P> > pque;int prim(){ memset(used,0,sizeof(used)); used[0]=true; int unum=1; for(int i=1;i<numa;i++){ pque.push(P(e[0][i],i)); } int ans=0; while(unum<numa){ int t=pque.top().second; int td=pque.top().first; pque.pop(); if(used[t])continue; ans+=td; used[t]=true; unum++; for(int i=0;i<numa;i++){ if(!used[i]){ pque.push(P(e[t][i],i)); } } } while(!pque.empty())pque.pop(); return ans;}int main(){ int t; scanf("%d",&t); while(t--){ scanf("%d%d",&x,&y); gets(maz[0]); for(int i=0;i<y;i++){ gets(maz[i]); } bfs(); int ans=prim(); printf("%d\n",ans); }}
poj 3026 Borg Maze 最小生成树+bfs prim算法
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。