首页 > 代码库 > 模拟赛1031d2

模拟赛1031d2

巧克力棒(chocolate)
Time Limit:1000ms Memory Limit:64MB
题目描述
LYK 找到了一根巧克力棒,但是这根巧克力棒太长了, LYK 无法一口吞进去。
具体地,这根巧克力棒长为 n,它想将这根巧克力棒折成 n 段长为 1 的巧克力棒,然后
慢慢享用。
它打算每次将一根长为 k 的巧克力棒折成两段长为 a 和 b 的巧克力棒,此时若 a=b,则
LYK 觉得它完成了一件非常困难的事,并会得到 1 点成就感。
LYK 想知道一根长度为 n 的巧克力棒能使它得到最多几点成就感。
输入格式(chocolate.in)
第一行一个数 n。
输出格式(chocolate.out)
一个数表示答案。
输入样例
7
输出样例
4
数据范围
对于 20%的数据 n<=5。
对于 50%的数据 n<=20。
对于 80%的数据 n<=2000。
对于 100%的数据 n<=1000000000。
样例解释
将 7 掰成 3+4,将 3 掰成 1+2,将 4 掰成 2+2 获得 1 点成就感,将剩下的所有 2 掰成 1+1
获得 3 点成就感。总共 4 点成就感。

/*贪心,尽量使长度向2^?靠近*/
#include<cstdio>
#include<iostream>
#define N 35
using namespace std;
int a[N],b[N],num,n,ans;
void dfs(int x)
{
    if(x==1)return;
    for(int i=num;i>=1;i--)
      if(x>=a[i])
      {
          if(x==a[i])
          {
              ans+=x-1;
              return;
        }
        ans+=a[i]-1;
          dfs(x-a[i]);
          break;
      }
}
int main()
{
    //freopen("chocolate.in","r",stdin);
    //freopen("chocolate.out","w",stdout);
    scanf("%d",&n);
    for(int i=2;i<=n;i*=2)
      a[++num]=i;
    dfs(n);
    printf("%d",ans);
    return 0;
}

 

LYK 快跑! (run)
Time Limit:5000ms Memory Limit:64MB
题目描述
LYK 陷进了一个迷宫!这个迷宫是网格图形状的。 LYK 一开始在(1,1)位置,出口在(n,m)。
而且这个迷宫里有很多怪兽,若第 a 行第 b 列有一个怪兽,且此时 LYK 处于第 c 行 d 列,此
时这个怪兽对它的威胁程度为|a-c|+|b-d|。
LYK 想找到一条路径,使得它能从(1,1)到达(n,m),且在途中对它威胁程度最小的怪兽的
威胁程度尽可能大。
当然若起点或者终点处有怪兽时,无论路径长什么样,威胁程度最小的怪兽始终=0。
输入格式(run.in)
第一行两个数 n,m。
接下来 n 行,每行 m 个数,如果该数为 0,则表示该位置没有怪兽,否则存在怪兽。
数据保证至少存在一个怪兽。
输入格式(run.out)
一个数表示答案。
输入样例
3 4
0 1 1 0
0 0 0 0
1 1 1 0
输出样例
1
数据范围
对于 20%的数据 n=1。
对于 40%的数据 n<=2。
对于 60%的数据 n,m<=10。
对于 80%的数据 n,m<=100。
对于 90%的数据 n,m<=1000。
对于另外 10%的数据 n,m<=1000 且怪兽数量<=100

/*
  典型的二分答案,但是第一遍预处理没处理好,90分,TLE
  其实只要把这些点入队,BFS一遍就行了
*/
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#define N 1010
using namespace std;
int a[N][N],b[N][N],n,m,num,qx[N*N],qy[N*N],vis[N][N];
int ax[4]={0,0,1,-1};
int ay[4]={1,-1,0,0};
bool check(int limit)
{
    memset(vis,0,sizeof(vis));
    memset(qx,0,sizeof(qx));
    memset(qy,0,sizeof(qy));
    int head=0,tail=1;
    qx[1]=1;qy[1]=1;vis[1][1]=1;
    while(head<tail)
    {
        ++head;int nx=qx[head],ny=qy[head];
        for(int i=0;i<4;i++)
        {
            int xx=nx+ax[i],yy=ny+ay[i];
            if(xx>=1&&xx<=n&&yy>=1&&yy<=m&&!vis[xx][yy]&&!a[xx][yy]&&b[xx][yy]>=limit)
            {
                ++tail;qx[tail]=xx;qy[tail]=yy;vis[xx][yy]=1;
                if(xx==n&&yy==m)return true;
            }
        }
    }
    return false;
}
void BFS()
{
    int head=0,tail=num;
    while(head<=tail)
    {
        ++head;int nx=qx[head],ny=qy[head];
        for(int i=0;i<4;i++)
        {
            int xx=nx+ax[i],yy=ny+ay[i];
            if(xx>=1&&xx<=n&&yy>=1&&yy<=m&&!b[xx][yy]&&!a[xx][yy])
            {
                b[xx][yy]=b[nx][ny]+1;
                ++tail;qx[tail]=xx;qy[tail]=yy;
            }
        }
    }
}
int main()
{
    //freopen("run.in","r",stdin);
    //freopen("run.out","w",stdout);
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++)
      for(int j=1;j<=m;j++)
      {
          scanf("%d",&a[i][j]);
          if(a[i][j]){qx[++num]=i;qy[num]=j;}
      }
    if(a[1][1]||a[n][m])
    {
        printf("0");
        return 0;
    }
    BFS();
    int l=0,r=N*N,ans=0;
    while(l<=r)
    {
        int mid=(l+r)/2;
        if(check(mid))
        {
            l=mid+1;
            ans=mid;
        }
        else r=mid-1;
    }
    printf("%d",ans);
    return 0;
}

 


仙人掌(cactus)
Time Limit:1000ms Memory Limit:64MB
题目描述
LYK 在冲刺清华集训( THUSC)!于是它开始研究仙人掌?,它想来和你一起分享它最近
研究的结果。
如果在一个无向连通图中任意一条边至多属于一个简单环(简单环的定义为每个点至多
经过一次),且不存在自环,我们称这个图为仙人掌。
LYK 觉得仙人掌还是太简单了,于是它定义了属于自己的仙人掌。
定义一张图为美妙的仙人掌,当且仅当这张图是一个仙人掌且对于任意两个不同的点 i,j,
存在一条从 i 出发到 j 的路径,且经过的点的个数为|j-i|+1 个。
给定一张 n 个点 m 条边且没有自环的图, LYK 想知道美妙的仙人掌最多有多少条边。
数据保证整张图至少存在一个美妙的仙人掌。
输入格式(cactus.in)
第一行两个数 n,m 表示这张图的点数和边数。
接下来 m 行,每行两个数 u,v 表示存在一条连接 u,v 的无向边。
输出格式(cactus.out)
一个数表示答案
输入样例
4 6
1 2
1 3
1 4
2 3
2 4
3 4
输出样例
4
样例解释
选择边 1-2,1-3,2-3,3-4,能组成美妙的仙人掌,且不存在其它美妙仙人掌有超过 4 条
边。
数据范围
对于 20%的数据 n<=3。
对于 40%的数据 n<=5。
对于 60%的数据 n<=8。
对于 80%的数据 n<=1000。
对于 100%的数据 n<=100000 且 m<=min(200000,n*(n-1)/2)。

/*
  首先这n个点应该全选(确实不知道为什么)
  由题意可知,一定存在一条连接i与i+1的边,因为只存在一个简单环,所以除了i到i+1的边之外,只能有一条边覆盖i到i+1这个位置,这样就转成了线段覆盖问题。
*/
#include<cstdio>
#include<iostream>
#include<algorithm>
#define N 100010
using namespace std;
int n,m;
struct node
{
    int x,y;
};node e[N*2];
bool cmp(const node&s1,const node&s2)
{
    return s1.y<s2.y;
}
int main()
{
    //freopen("cactus.in","r",stdin);
    //freopen("cactus.out","w",stdout);
    scanf("%d%d",&n,&m);
    int t=0;
    for(int i=1;i<=m;i++)
    {
        int x,y;scanf("%d%d",&x,&y);
        if(x>y)swap(x,y);
        if(x+1!=y)e[++t].x=x,e[t].y=y;
    }
    sort(e+1,e+t+1,cmp);
    int tot=0,p=0;
    for(int i=1;i<=t;i++)
      if(e[i].x>=p)p=e[i].y,tot++;
    printf("%d",tot+n-1);
    return 0;
}

 

模拟赛1031d2