首页 > 代码库 > POJ2479 Maximum sum[DP|最大子段和]
POJ2479 Maximum sum[DP|最大子段和]
Maximum sum
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 39599 | Accepted: 12370 |
Description
Given a set of n integers: A={a1, a2,..., an}, we define a function d(A) as below:Your task is to calculate d(A).
Input
The input consists of T(<=30) test cases. The number of test cases (T) is given in the first line of the input.
Each test case contains two lines. The first line is an integer n(2<=n<=50000). The second line contains n integers: a1, a2, ..., an. (|ai| <= 10000).There is an empty line after each case.
Each test case contains two lines. The first line is an integer n(2<=n<=50000). The second line contains n integers: a1, a2, ..., an. (|ai| <= 10000).There is an empty line after each case.
Output
Print exactly one line for each test case. The line should contain the integer d(A).
Sample Input
1101 -1 2 2 3 -3 4 -4 5 -5
Sample Output
13
Hint
In the sample, we choose {2,2,3,-3,4} and {5}, then we can get the answer.
Huge input,scanf is recommended.
Huge input,scanf is recommended.
Source
POJ Contest,Author:Mathematica@ZSU
题意:求两段和最大
一开始自己想
d[i][0]前i个以i结尾选了一段
d[i][1]前i个以i结尾选了两段
然后扫描维护一个d[i][0]的最大值mx,转移
d[i][0]=max(0,d[i-1][0])+a[i];
d[i][1]=max(d[i-1][1],mx)+a[i];
初始化注意一下就行了
还有一种做法:
双向求最大字段和,最后枚举第一段的结束位置求
//两个dp函数,两种方法#include <iostream>#include <cstdio>#include <algorithm>#include <cstring>using namespace std;const int N=5e4+5,INF=1e9;inline int read(){ char c=getchar();int x=0,f=1; while(c<‘0‘||c>‘9‘){if(c==‘-‘)f=-1;c=getchar();} while(c>=‘0‘&&c<=‘9‘){x=x*10+c-‘0‘;c=getchar();} return x*f;}int T,n,a[N];int d[N][2],ans;void dp(){ ans=-INF;int mx=a[1]; d[1][0]=a[1];d[1][1]=-INF; for(int i=2;i<=n;i++){ d[i][0]=max(0,d[i-1][0])+a[i]; d[i][1]=max(d[i-1][1],mx)+a[i]; mx=max(mx,d[i][0]); ans=max(ans,d[i][1]); }}void dp2(){ ans=-INF; for(int i=1;i<=n;i++) d[i][0]=max(0,d[i-1][0])+a[i]; d[n+1][1]=0; for(int i=n;i>=1;i--) d[i][1]=max(0,d[i+1][1])+a[i]; int mx=d[1][0]; for(int i=2;i<=n;i++){ ans=max(ans,mx+d[i][1]); mx=max(mx,d[i][0]); }}int main(int argc, const char * argv[]) { T=read(); while(T--){ n=read(); for(int i=1;i<=n;i++) a[i]=read(); dp(); printf("%d\n",ans); } return 0;}
POJ2479 Maximum sum[DP|最大子段和]
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。