首页 > 代码库 > Miller_Rabin素数测试

Miller_Rabin素数测试

 1 #include<iostream> 2 #include<cmath> 3 #include<cstdio> 4 #include<cstring> 5 #include<algorithm> 6 using namespace std; 7  8 long long mul(long long a,long long n,long long mo){ 9     long long ans=0;10     while (n){11         if (n&1) ans=(ans+a)%mo;12         a=(a+a)%mo;13         n/=2;14     }15     return ans;16 }17 18 long long pow(long long a,long long n,long long mo){19     long long ans=1;20     while (n){21         if (n&1) ans=mul(ans,a,mo);22         a=mul(a,a,mo);23         n/=2;24     }25     return ans;26 }27 28 bool Miller_Rabin(long long n){29     if (n<=2){30         if (n==2) return true;31         else return false;32     }33     if (n%2==0) return false;34     long long u=n-1;35     while (u%2==0){36         u/=2;37     }38     int t=1e2;39     while (t--){40         long long a=(rand()%(n-2))+2;41         long long x=pow(a,u,n);42         long long w=u*2;43         long long y=mul(x,x,n);44         while (w<n){45             if (y==1&&x!=1&&x!=(n-1)) return false;46             x=y;47             y=mul(y,y,n);48             w*=2;49         }50         if (x!=1) return false;51     }52     return true;53 }54 55 int main(){56    int t;57    scanf("%d",&t);58    while (t--){59         long long n;60         scanf("%lld",&n);61         if (Miller_Rabin(n)) printf("Yes\n");62         else printf("No\n");63    }64 65 }
费马小定理:对于质数p和任意整数a,有a^p ≡ a(mod p)(同余)。反之,若满足a^p ≡ a(mod p),p也有很大概率为质数。将两边同时约去一个a,则有a^(p-1) ≡ 1(mod p)

也即是说:假设我们要测试n是否为质数。我们可以随机选取一个数a,然后计算a^(n-1) mod n,如果结果不为1,我们可以100%断定n不是质数。

否则我们再随机选取一个新的数a进行测试。如此反复多次,如果每次结果都是1,我们就假定n是质数。

该测试被称为Fermat测试。需要注意的是:Fermat测试不一定是准确的,有可能出现把合数误判为质数的情况。

Miller和Rabin在Fermat测试上,建立了Miller-Rabin质数测试算法。

 

与Fermat测试相比,增加了一个二次探测定理:

如果p是奇素数,则 x^2 ≡ 1(mod p)的解为 x ≡ 1 或 x ≡ p - 1(mod p)

如果a^(n-1) ≡ 1 (mod n)成立,Miller-Rabin算法不是立即找另一个a进行测试,而是看n-1是不是偶数。如果n-1是偶数,另u=(n-1)/2,并检查是否满足二次探测定理即a^u ≡ 1 或 a^u ≡ n - 1(mod n)。

举个Matrix67 Blog上的例子,假设n=341,我们选取的a=2。则第一次测试时,2^340 mod 341=1。由于340是偶数,因此我们检查2^170,得到2^170 mod 341=1,满足二次探测定理。同时由于170还是偶数,因此我们进一步检查2^85 mod 341=32。此时不满足二次探测定理,因此可以判定341不为质数。

Miller_Rabin素数测试