首页 > 代码库 > 使用blas做矩阵乘法
使用blas做矩阵乘法
#define min(x,y) (((x) < (y)) ? (x) : (y))#include <stdio.h>#include <stdlib.h>#include <cublas_v2.h>#include <iostream>#include <vector>//extern "C"//{ #include <cblas.h>//}using namespace std;int main(){ const enum CBLAS_ORDER Order=CblasRowMajor; const enum CBLAS_TRANSPOSE TransA=CblasNoTrans; const enum CBLAS_TRANSPOSE TransB=CblasNoTrans; const int M=4;//A的行数,C的行数 const int N=2;//B的列数,C的列数 const int K=3;//A的列数,B的行数 const float alpha=1; const float beta=0; const int lda=K;//A的列 const int ldb=N;//B的列 const int ldc=N;//C的列 const float A[M*K]={1,2,3,4,5,6,7,8,9,8,7,6}; const float B[K*N]={5,4,3,2,1,0}; float C[M*N]; cblas_sgemm(Order, TransA, TransB, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); for(int i=0;i<M;i++) { for(int j=0;j<N;j++) { cout<<C[i*N+j]<<"\n"; } cout<<endl; } return EXIT_SUCCESS; }
g++ testblas.c++ -lopenblas -o testout
g++ testblas.c++ -lopenblas_piledriverp-r0.2.9 -o testout 本地编译openblas版本
注意library放在引用library的函数的后面
cblas_sgemmMultiplies two matrices (single-precision).void cblas_sgemm (const enum CBLAS_ORDER Order, // Specifies row-major (C) or column-major (Fortran) data ordering.//typedef enum CBLAS_ORDER {CblasRowMajor=101, CblasColMajor=102} CBLAS_ORDER;const enum CBLAS_TRANSPOSE TransA,//Specifies whether to transpose matrix A.const enum CBLAS_TRANSPOSE TransB,const int M, //Number of rows in matrices A and C.const int N,//Number of rows in matrices A and C.const int K, //Number of columns in matrix A; number of rows in matrix Bconst float alpha, //Scaling factor for the product of matrices A and Bconst float *A, const int lda, //The size of the first dimention of matrix A; if you are passing a matrix A[m][n], the value should be m.const float *B, const int ldb, //The size of the first dimention of matrix B; if you are passing a matrix B[m][n], the value should be m.const float beta, //Scaling factor for matrix C.float *C,const int ldc //The size of the first dimention of matrix C; if you are passing a matrix C[m][n], the value should be m.);Thus, it calculates eitherC←αAB + βCorC←αBA + βCwith optional use of transposed forms of A, B, or both.
typedef enum CBLAS_ORDER {CblasRowMajor=101, CblasColMajor=102} CBLAS_ORDER;typedef enum CBLAS_TRANSPOSE {CblasNoTrans=111, CblasTrans=112, CblasConjTrans=113, CblasConjNoTrans=114} CBLAS_TRANSPOSE;
$C=A*B$
$C^T=(A*B)^T=B^T*A^T$ 把A和B的顺序颠倒,可以直接得到转制矩阵乘法的结果,不用作其他变换,(结果C也是转制)。
cblas_sgemvMultiplies a matrix by a vector (single precision).
void cblas_sgemv (const enum CBLAS_ORDER Order,const enum CBLAS_TRANSPOSE TransA,const int M,const int N,const float alpha,const float *A,const int lda,const float *X,const int incX,const float beta,float *Y,const int incY);
Y←αAX + βY
STL版本
cblas_daxpy
Computes a constant times a vector plus a vector (double-precision).
On return, the contents of vector Y are replaced with the result. The value computed is (alpha * X[i]) +
Y[i].
#include <OpenBlas/cblas.h>#include <OpenBlas/common.h>#include <iostream>#include <vector>int main(){ blasint n = 10; blasint in_x =1; blasint in_y =1; std::vector<double> x(n); std::vector<double> y(n); double alpha = 10; std::fill(x.begin(),x.end(),1.0); std::fill(y.begin(),y.end(),2.0); cblas_daxpy( n, alpha, &x[0], in_x, &y[0], in_y); //Print y for(int j=0;j<n;j++) std::cout << y[j] << "\t"; std::cout << std::endl;}
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。