首页 > 代码库 > 1^2+2^2+……+n^2的公式证明
1^2+2^2+……+n^2的公式证明
求^2就从^3入手,求^3就从^4入手,求^t就从^(t+1)入手
因为(n+1)^3=n^3+3n^2+3n+1
所以2^3=1^3+3*1^2+3*1+1
3^3=2^3+3*2^2+3*2+1
……
(n+1)^3=n^3+3n^2+2n+1
所以2^3+3^3+……+(n+1)^3=1^3+2^3+……+3*(1^2+2^2+……+^2)+3(1+2+……+n)+(1+1+……+1)
所以3(1^2+2^2+……+n^2)=n^3+3n^2+2n+1-a-3-[n(n+1)]/2-n
所以S(An)=1^2+2^2+……+n^2=(n^3+3n^2+3n)/3-n(n+1)/2-n/3=n(n+1)(2n+1)/6
1^2+2^2+……+n^2的公式证明
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。