首页 > 代码库 > xtu read problem training 4 B - Multiplication Puzzle
xtu read problem training 4 B - Multiplication Puzzle
Multiplication Puzzle
Time Limit: 1000ms
Memory Limit: 65536KB
This problem will be judged on PKU. Original ID: 165164-bit integer IO format: %lld Java class name: Main
The multiplication puzzle is played with a row of cards, each containing a single positive integer. During the move player takes one card out of the row and scores the number of points equal to the product of the number on the card taken and the numbers on the cards on the left and on the right of it. It is not allowed to take out the first and the last card in the row. After the final move, only two cards are left in the row.
The goal is to take cards in such order as to minimize the total number of scored points.
For example, if cards in the row contain numbers 10 1 50 20 5, player might take a card with 1, then 20 and 50, scoring
10*1*50 + 50*20*5 + 10*50*5 = 500+5000+2500 = 8000
If he would take the cards in the opposite order, i.e. 50, then 20, then 1, the score would be
1*50*20 + 1*20*5 + 10*1*5 = 1000+100+50 = 1150.
The goal is to take cards in such order as to minimize the total number of scored points.
For example, if cards in the row contain numbers 10 1 50 20 5, player might take a card with 1, then 20 and 50, scoring
If he would take the cards in the opposite order, i.e. 50, then 20, then 1, the score would be
Input
The first line of the input contains the number of cards N (3 <= N <= 100). The second line contains N integers in the range from 1 to 100, separated by spaces.
Output
Output must contain a single integer - the minimal score.
Sample Input
610 1 50 50 20 5
Sample Output
3650
Source
Northeastern Europe 2001, Far-Eastern Subregion
解题:dp[i][j]表示从i到j被划分后的最小值!为什么dp[i][j] = min(dp[i][j],dp[i][k]+dp[k][j]+d[i]*d[j]*d[k])ne
举个栗子 1 2 3 4 5
dp[1][5] = min(dp[1][5],dp[1][3]+dp[3][5]+d[1]*d[3]*d[5]) dp[i][j]表示i j段 剩有i j,像刚才的转移方程,dp[1][5]不是取了3以后 剩下了1 5 么
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cmath> 5 #include <algorithm> 6 #include <climits> 7 #include <vector> 8 #include <queue> 9 #include <cstdlib>10 #include <string>11 #include <set>12 #include <stack>13 #define LL long long14 #define INF 0x3f3f3f3f15 using namespace std;16 int dp[110][110],d[110],n;17 int main(){18 int i,j,k;19 while(~scanf("%d",&n)){20 for(i = 1; i <= n; i++)21 scanf("%d",d+i);22 memset(dp,0,sizeof(dp));23 for(k = 3; k <= n; k++){24 for(i = 1; i+k-1 <= n; i++){25 dp[i][i+k-1] = INF;26 for(j = i+1; j < i+k; j++)27 dp[i][i+k-1] = min(dp[i][i+k-1],dp[i][j]+dp[j][i+k-1]+d[i]*d[j]*d[i+k-1]);28 }29 }30 cout<<dp[1][n]<<endl;31 }32 return 0;33 }
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。