首页 > 代码库 > POJ 2486 树形DP

POJ 2486 树形DP

有一颗苹果树,每个节点上面有很多苹果,从一个节点到另外一个可以到达的节点花费1步,求k步最多能吃到多少苹果,起始点为1,可以不回到起始点。

这是典型的回溯型树状dp。

dp[i][j][0]代表以i为根节点的子树最多j步后回到i能吃到的最多的苹果,

dp[i][j][1]代表以i为根节点的子树最多j步后不回到i节点最多能吃到的子树。那么状态转移就分三步了。

(1)dp[i][j+2][0] = max(dp[i][j+2][0], dp[i][j-k][0]+dp[son][k][0]);

(2)dp[i][j+1][1] = max(dp[i][j+1][1], dp[i][j-k][0]+dp[son][k][1]);  人留在i的子节点son的子树中

(3)dp[i][j+2][1] = max(dp[i][j+2][1], dp[i][j-k][1]+dp[son][k][0]);  人留在不是son的i的子节点的子树中

#include "stdio.h"
#include "string.h"
#include "vector"
using namespace std;

vector< vector<int> >data(110);
int dp[110][210][3],vis[110],v[110];
int n,m;

int Max(int a,int b)
{
    if (a<b) return b;else return a;
}
void dfs(int cur)
{
    int i,next,j,k;
    vis[cur]=1;
    for (i=0;i<=m;i++)
        dp[cur][i][0]=dp[cur][i][1]=v[cur];
    for (i=0;i<data[cur].size();i++)
    {
        next=data[cur][i];
        if (vis[next]==0)
        {
            dfs(next);
            for (j=m;j>=0;j--)
                for (k=0;k<=j;k++)
                {
                    dp[cur][j+2][0]=Max(dp[cur][j+2][0],dp[cur][j-k][0]+dp[next][k][0]);
                    dp[cur][j+1][1]=Max(dp[cur][j+1][1],dp[cur][j-k][0]+dp[next][k][1]);
                    dp[cur][j+2][1]=Max(dp[cur][j+2][1],dp[cur][j-k][1]+dp[next][k][0]);

                }
        }
    }
}

int main()
{
    int i,x,y;
    while (scanf("%d%d",&n,&m)!=EOF)
    {
        for (i=1;i<=n;i++)
        {
            data[i].clear();
            scanf("%d",&v[i]);
        }

        for (i=2;i<=n;i++)
        {
            scanf("%d%d",&x,&y);
            data[x].push_back(y);
            data[y].push_back(x);
        }
        memset(vis,0,sizeof(vis));
        memset(dp,0,sizeof(dp));
        dfs(1);
        printf("%d\n",dp[1][m][1]);

    }
    return 0;
}