首页 > 代码库 > 《University Calculus》-chape10-向量与空间几何学-向量夹角
《University Calculus》-chape10-向量与空间几何学-向量夹角
点积、向量夹角:
无论对于空间向量还是平面向量,我们所熟知的是:给出任意两个向量,我们都能够根据公式计算它们的夹角,但是这个夹角必须是将两个向量的起点重合后所夹成的小于等于π的角,可是,这是为什么呢?
它其实来源于如下的定理(这里的定理和证明过程以三维向量为例,对于二维向量,可做完全一致的推导):
证明:
考虑在如下的一个三角形中。
通过这个定理的证明过程就能够理解:为什么我们求向量夹角用点积;两个向量之间的点积为什么等于两个向量模长再乘以夹角的余弦值;为什么我们求出来的角是起点重合的两个向量夹出小于π的角(因为我们基于一个三角形,两向量起点重合是的向量w能够按照上文中给出的形式计算)。
《University Calculus》-chape10-向量与空间几何学-向量夹角
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。