首页 > 代码库 > Triangle

Triangle

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[     [2],    [3,4],   [6,5,7],  [4,1,8,3]]

 

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

分析:该题可以用暴力搜索的方式将所有path的和存在一个vector中,但这样的空间复杂度是O(2^n)。为了使空间复杂度降到O(n),我们可以用动态规划里record的方式,这里的record我们只需记录到上一行每个位置path的最小sum,然后通过这个计算到本行每个位置path的最小sum。代码如下:

 1 class Solution { 2 public: 3     int minimumTotal(vector<vector<int> > &triangle) { 4         vector<int> pre_sum, cur_sum; 5         pre_sum.push_back(triangle[0][0]); 6         cur_sum.push_back(triangle[0][0]); 7         for(int i = 1; i < triangle.size(); i++){ 8             cur_sum.clear(); 9             for(int j = 0; j < triangle[i].size(); j++){10                 if(j == 0) cur_sum.push_back(pre_sum[0]+triangle[i][j]);11                 else if(j == triangle[i].size()-1) cur_sum.push_back(pre_sum.back()+triangle[i][j]);12                 else cur_sum.push_back(min(pre_sum[j-1]+triangle[i][j],pre_sum[j]+triangle[i][j]));13             }14             pre_sum = cur_sum;15         }16         return *min_element(cur_sum.begin(),cur_sum.end());17     }18 };