首页 > 代码库 > Triangle

Triangle

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

[     [2],    [3,4],   [6,5,7],  [4,1,8,3]]

 

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

 

思路:每层的每一个节点的最短路径只有上一层的两个节点决定。从下往上计算。

 

 1 class Solution { 2 public: 3     int minimumTotal(vector<vector<int> > &triangle) { 4         int len=triangle.size(); 5         vector<int> pathsum; 6         for(int i=0;i<triangle[len-1].size();i++) 7         pathsum.push_back(triangle[len-1][i]); 8         for(int i=len-2;i>=0;i--) 9         {10             for(int j=0;j<triangle[i].size();j++)11             {12                 int sum=min(pathsum[j]+triangle[i][j], pathsum[j+1]+triangle[i][j]);13                 pathsum[j]=sum;14             }15         }16         return pathsum[0];17     }18 };