首页 > 代码库 > Triangle
Triangle
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3]]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
class Solution {public: int minimumTotal(vector<vector<int> > &triangle) { if(triangle.size()==0) return 0; vector<int> f(triangle[triangle.size()-1].size()); f[0]=triangle[0][0]; for(int i=1;i<triangle.size();i++){ for(int j=triangle[i].size()-1;j>=0;j--){ if(j==0) f[j]=f[j]+triangle[i][j]; else if(j==triangle[i].size()-1) f[j]=f[j-1]+triangle[i][j]; else f[j]=min(f[j],f[j-1])+triangle[i][j]; } } int m=INT_MAX; for(int i=0;i<f.size();i++){ m=min(m,f[i]); } return m; }};
Triangle
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。