首页 > 代码库 > Edit Distance (or Levenshtein Distance) python solution for leetcode EPI 17.2
Edit Distance (or Levenshtein Distance) python solution for leetcode EPI 17.2
https://oj.leetcode.com/problems/edit-distance/
Edit Distance
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
1 class Solution: 2 # @return an integer 3 def minDistance(self, word1, word2): 4 #http://www.cnblogs.com/zuoyuan/p/3773134.html 5 m=len(word1)+1; n=len(word2)+1 6 dp = [[0 for i in range(n)] for j in range(m)] 7 delCost = insCost = subCost = 1 # The cost for each operation 8 9 for i in range(m):10 dp[i][0]=i11 for j in range(n):12 dp[0][j]=j13 14 for i in range(1,m):15 for j in range(1,n):16 # del insert same sub17 #dp[i][j]=min(dp[i-1][j]+1, dp[i][j-1]+1, dp[i-1][j-1]+(0 if word1[i-1]==word2[j-1] else 1))18 dp[i][j]=min(dp[i-1][j] + insCost, dp[i][j-1] + delCost, dp[i-1][j-1]+(0 if word1[i-1]==word2[j-1] else subCost))19 return dp[m-1][n-1]20 21 """22 解题思路:这道题是很有名的编辑距离问题。用动态规划来解决。23 状态转移方程是这样的:dp[i][j]表示word1[0...i-1]到word2[0...j-1]的编辑距离。24 而dp[i][0]显然等于i,因为只需要做i次删除操作就可以了。25 同理dp[0][i]也是如此,等于i,因为只需做i次插入操作就可以了。26 dp[i-1][j]变到dp[i][j]需要加1,因为word1[0...i-2]到word2[0...j-1]的距离是dp[i-1][j],27 而word1[0...i-1]到word1[0...i-2]需要执行一次删除,所以dp[i][j]=dp[i-1][j]+1;28 同理dp[i][j]=dp[i][j-1]+1,因为还需要加一次word2的插入操作。29 如果word[i-1]==word[j-1],则dp[i][j]=dp[i-1][j-1],30 如果word[i-1]!=word[j-1],那么需要执行一次替换replace操作,所以dp[i][j]=dp[i-1][j-1]+1,以上就是状态转移方程的推导。31 """32 ‘‘‘ Implement the minimum edit distance according to33 the description of WikiPedia:34 http://en.wikipedia.org/wiki/Edit_distance35 Some other implements are available here:36 http://en.wikibooks.org/wiki/Algorithm_Implementation/Strings/Levenshtein_distance37 ‘‘‘38 #if len(word1) < len(word2):39 # word1, word2 =word2, word140 """41 delCost = insCost = subCost = 1 # The cost for each operation42 steps = range(len(word1)+1)43 44 for word2Index in xrange(len(word2)):45 diag = steps[0] # d(i-1, j-1)46 steps[0] += 147 48 for word1Index in xrange(len(word1)):49 temp = steps[word1Index+1] # d(i-1, j)50 51 if word1[word1Index] == word2[word2Index]:52 steps[word1Index+1] = diag53 else:54 steps[word1Index+1] = min(steps[word1Index+1] + insCost, 55 steps[word1Index] + delCost, 56 diag + subCost)57 58 diag = temp # Store d(i-1, j-1) for next cell59 60 return steps[-1]61 """
Edit Distance (or Levenshtein Distance) python solution for leetcode EPI 17.2
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。