首页 > 代码库 > bzoj 1492: [NOI2007]货币兑换Cash

bzoj 1492: [NOI2007]货币兑换Cash

Description

小Y最近在一家金券交易所工作。该金券交易所只发行交易两种金券:A纪念券(以下简称A券)和 B纪念券(以下
简称B券)。每个持有金券的顾客都有一个自己的帐户。金券的数目可以是一个实数。每天随着市场的起伏波动,
两种金券都有自己当时的价值,即每一单位金券当天可以兑换的人民币数目。我们记录第 K 天中 A券 和 B券 的
价值分别为 AK 和 BK(元/单位金券)。为了方便顾客,金券交易所提供了一种非常方便的交易方式:比例交易法
。比例交易法分为两个方面:(a)卖出金券:顾客提供一个 [0,100] 内的实数 OP 作为卖出比例,其意义为:将
 OP% 的 A券和 OP% 的 B券 以当时的价值兑换为人民币;(b)买入金券:顾客支付 IP 元人民币,交易所将会兑
换给用户总价值为 IP 的金券,并且,满足提供给顾客的A券和B券的比例在第 K 天恰好为 RateK;例如,假定接
下来 3 天内的 Ak、Bk、RateK 的变化分别为:
技术分享
假定在第一天时,用户手中有 100元 人民币但是没有任何金券。用户可以执行以下的操作:
技术分享
注意到,同一天内可以进行多次操作。小Y是一个很有经济头脑的员工,通过较长时间的运作和行情测算,他已经
知道了未来N天内的A券和B券的价值以及Rate。他还希望能够计算出来,如果开始时拥有S元钱,那么N天后最多能
够获得多少元钱。

Input

输入第一行两个正整数N、S,分别表示小Y能预知的天数以及初始时拥有的钱数。接下来N行,第K行三个实数AK、B
K、RateK,意义如题目中所述。对于100%的测试数据,满足:0<AK≤10;0<BK≤10;0<RateK≤100;MaxProfit≤1
0^9。
【提示】
1.输入文件可能很大,请采用快速的读入方式。
2.必然存在一种最优的买卖方案满足:
每次买进操作使用完所有的人民币;
每次卖出操作卖出所有的金券。

Output

只有一个实数MaxProfit,表示第N天的操作结束时能够获得的最大的金钱数目。答案保留3位小数。

Sample Input

3 100
1 1 1
1 2 2
2 2 3

Sample Output

225.000

HINT

技术分享

Source

 

这其实是一道大火题,是CDQ分治的发明题 Orz,Orz,Orz

蒟蒻如我连一个单调都做不出,而这个题就真的实在玩蛇皮了

题目提示解题法:

必然存在一种最优的买卖方案满足:
每次买进操作使用完所有的人民币;
每次卖出操作卖出所有的金券。
 
好的有了这句话之后,暴力n^2就变得很水了
f[i]=max(f[i-1],a[j]*ak[i]+b[j]*bk[i])
注意一天是即可以买入又可以卖出
其中:
numa*ak+numb*bk=f[k];
numa=numb*rk;
numb*rk*ak+numb*bk=f[k];
numb*(rk*ak+bk)=f[k];
numb=f[k]/(rk*ak+bk);
所以暴力就打完了,60分
// MADE BY QT666
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<iostream>
#include<queue>
#include<set>
#include<cstdlib>
#include<cstring>
#include<string>
#include<ctime>
#define lson num<<1
#define rson num<<1|1
using namespace std;
typedef long long ll;
const int N=100050;
double f[N],a[N],b[N],ak[N],bk[N],rk[N],S;
int n;
int main(){
	scanf("%d",&n);scanf("%lf",&S);
	for(int i=1;i<=n;i++){
		scanf("%lf%lf%lf",&ak[i],&bk[i],&rk[i]);
	}
	f[0]=S;
	for(int i=1;i<=n;i++){
		f[i]=f[i-1];
		for(int j=1;j<i;j++){
			b[j]=f[j]/(rk[j]*ak[j]+bk[j]);a[j]=b[j]*rk[j];
			f[i]=max(f[i],a[j]*ak[i]+b[j]*bk[i]);
			}
		}
	printf("%.3f",f[n]);
}

 

bzoj 1492: [NOI2007]货币兑换Cash