首页 > 代码库 > 读书笔记-程序观点下的线性代数
读书笔记-程序观点下的线性代数
线性代数的核心:向量模型
线性代数到底是一种客观的自然规律还是人为的设计?
所有程序语言的共同性在于:建立了一套模型,定义了一套语法,并将每种语法映射到特定的语义。程序员和语言实现 者之间遵守语言契约:程序员保证代码符合语言的语法,编译器/解释器保证代码执行的结果符合语法相应的语义。
程序的编译和解释本质上是不同模型间的语义映射
从应用的角度看,线性代数是一种人为设计的领域特定语言(DSL),它建立了一套模型并通过符号系统完成语法和语义的映射。
建立新模型肯定依赖于现有的模型,但这是建模的手段而不是目的,任何一种新模型的目的都为了更简单地分析和解决某一类问题。线性代数在建立的时候,它的各种概念和运算规则依赖于初等数学的知识,但是一旦建立起来这层抽象模型之后,我们就应该习惯于直接利用高层次的抽象模型去分析和解决问题。
模型的作用就是把一部分复杂性隐藏到模型中,使得模型的使用者可以更加简单地解决问题。
点积概念的提出属于设计,有发挥创造的余地;一旦设计定了,具体公式就不能随意发挥了,必须符合逻辑,保证它映射到初等数学模型的正确性。这就像一门高级语言可以定义很多概念,什么高阶函数、闭包等等,但是它必须保证映射到底层实现时在执行产生的效果符合其定义的规范。
我们在初等数学中学习的坐标系属于笛卡尔所提出的解析模型,这个 模型很有用,但同时也有很大的缺点。坐标系是人为加上的虚拟参考系,但是我们要解决的问题,比如求面积,图形旋转、拉伸等应用都是和坐标系无关的,建立一 个虚拟的坐标系往往无助于解决问题。
向量模型很好地克服了解析模型的缺点,如果说解析模型代表了某种“绝对性”的世界观,那么向量模型就代表了某种“相对性”的世界观,我推荐把向量模型和解析模型看作对立的两种模型
线性代数定义了矩阵和向量、矩阵和矩阵的乘法,运算规则很复杂,用来做什么也不清楚,很多初学者都不能很好地理解,可以说矩阵是学好线性代数的拦路 虎。遇到复杂的东西,往往需要先避免一头陷入细节,先从整体上把握它。其实,从程序的角度看,无论形式多么奇怪,它无非是一种语法,语法必然对应了语义, 所以理解矩阵的重点在于理解其语义。矩阵的语义不止一种,在不同的环境中有不同的语义,在同一环境中也可以有不同的解读,最常见的包括:1)表示一个线性 变换;2)表示列向量或行向量的集合;3)表示子矩阵的集合。
本文提出了一种观点:从应用的角度,我们可以把线性代数视为一门特定领域的程序语言。线性代数在初等数学基础上建立了向量模型,定义了一套语法和语义,符合程序语言的语言契约。向量模型具有坐标系无关性和线性性,它是整个线性代数的核心,是解决线性空间问题的最佳模型。
读书笔记-程序观点下的线性代数