首页 > 代码库 > 【推荐系统实战】:C++实现基于用户的协同过滤(UserCollaborativeFilter)
【推荐系统实战】:C++实现基于用户的协同过滤(UserCollaborativeFilter)
好早的时候就打算写这篇文章,但是还是参加阿里大数据竞赛的第一季三月份的时候实验就完成了,硬生生是拖到了十一假期,自己也是醉了。。。找工作不是很顺利,希望写点东西回顾一下知识,然后再攒点人品吧,只能如此了。
一、问题背景
二、基于用户的协同过滤算法介绍
三、数据结构和实验过程设计
四、代码
一、问题背景
首先介绍一下问题的背景,现在我有四个月的用户、品牌数据<user,brand>,即用户在这四个月中的某一天购买了某个品牌(当然为了简化算法模型,将购买时间省去,后面再说)。即现在有这四个月的数据,如何为用户推荐他们感兴趣的产品下个月购买?当然解决这个问题的算法和模型有很多很多种,现在就解释一下协同过滤算法。
二、基于用户的协同过滤算法介绍(User Collaborative Filter)
基于邻域的算法是推荐系统中最基本的算法,该算法不仅在学术界得到了深入的研究,而且在工业界也有广泛的应用。基于邻域的算法分为两大类,一类是基于用户的协同过滤算法,另一类是基于物品的协同过滤算法。这里只介绍一种基于用户的协同过滤算法。
在一个在线个性化推荐系统中,当一个用户A需要个性化推荐时,可以先找到和他有相似兴趣的其他用户,然后把那些用户喜欢的、而用户A没有听说过的物品推荐给A。这种方法称为基于用户的协同过滤算法。
从上面的描述可以看到,基于用户的协同过滤算法主要包括两个步骤:
(1)找到和目标用户相似的用户集合。
(2)找到这个集合中的用户喜欢的,且目标用户没有听说过的物品推荐给目标用户。
步骤1的关键就是计算两个用户的兴趣相似度。这里,协同过滤算法主要利用行为的相似度计算兴趣的相似度。给定用户u和用户v,令N(u)表示用户u曾经有过正反馈的物品集合(在我们的问题背景之下也就是用户u曾经买过的物品集合),令N(v)为用户v曾经有过正反馈的物品集合。那么,我们可以通过如下的Jaccard公式简单的计算u和v的兴趣相似度:
或者通过余弦相似度计算:
对于下图的用户行为记录:
在该例中,用户A对物品{a,b,c}有过行为,用户B对物品{a,c}有过行为,利用余弦相似度公式计算用户A和用户B的兴趣相似度,以及A和C、D的相似度:
那么,如果两两用户都利用余弦相似度计算相似度。这种方法的时间复杂度是O(|U|*|U|),这在用户数很大的情况下十分耗时。事实上,很多用户相互之间并没有相同的物品产生行为,即很多时候N(u)和N(v)的交集为0。那么,一种高效的算法就是首先计算出交集不为0的用户对{u,v},然后再对这种情况除以分母|N(u)UN(v)|(或者另一种根号形式)。
为此,可以首先建立物品到用户的倒查表,对于每个物品都保存对该物品产生过行为的用户列表。令系数矩阵C[u][v]=|N(u)并N(v)|。那么,假设用户u和用户v同时属于倒排表中K个物品对应的用户列表,就有C[u][v]=K。从而,可以扫描倒查表中每个物品对应的用户列表,将用户列表中的两两用户对应的C[u][v]加1,最终就可以得到所有用户之间不为0的C[u][v]。
对于上图的用户行为记录建立物品-用户的倒排表:
建立一个4*4的用户相似度矩阵W,对于物品a,将W[A][B]和W[B][A]加1,对于物品b,将W[A][C]和W[C][A]加1,以此类推。扫描完所有物品后,我们可以得到最终的W矩阵。这里的W是余弦相似度中的分子部分,然后将W除以分母可以得到最终的用户兴趣相似度。
得到用户之间的兴趣相似度后,UserCF算法会给用户推荐和他兴趣最相似的K个用户喜欢的物品。如下的公式度量了UserCF算法中用户u对物品i的感兴趣程度:
S(u,K):包含和用户u兴趣最接近的K个用户。
N(i):对物品i有过行为的用户集合
Wuv:用户u和用户v的兴趣相似度
Rvi:用户v对物品i的兴趣(这里都为1)
说明:i物品是用户u之前没有接触过的。那么用户u对物品i的感性却程度的计算过程可以分为几个步骤:
①找到与用户u最近的K个用户(通过用户相似度矩阵)
②通过K个用户和N(i)(对物品i有过购买的用户集合)的交集得到K个用户中对i感兴趣的若干用户集合v[]。
③将用户u和集合v[]中每一个用户v[i]之间的相似度累加的总和即为用户u对于物品i的感兴趣程度。
三、数据结构和实验过程设计
3.1:输入输出
准确率:
注:
N 为参赛队预测的用户数
pBrandsi为对用户i 预测他(她)会购买的品牌列表个数
hitBrandsi对用户i预测的品牌列表与用户i真实购买的品牌交集的个数
召回率:
注:
M 为实际产生成交的用户数量
bBrandsi为用户i 真实购买的品牌个数
hitBrandsi预测的品牌列表与用户i真实购买的品牌交集的个数
3.2:数据结构设计
map< int,int > userid_id:将userid映射到从0开始的依次递增的数值(id:0~n-1),为后续映射成矩阵做准备。
map< int,int > id_userid:与userid_id正好相反
map< int , set<int> > user_brands:用户-物品表:用户以及用户对应购买的物品列表
map< int , set<int> > id_brands:将user_brands依据userid_id转换成为id_brands
map< int , set<int> > brand_ids:物品-用户倒排表
set<int> brand_all :所有品牌的集合
map< int , set<int> > user_brand_rec :为用户推荐的品牌集合
3.3:算法过程:
<span style="font-size:14px;">1).读入数据,将数据用user_brands存起来,同时建立userid_id,再建立id_brands 2).遍历id_brands得到物品-用户倒排表brand_ids,根据倒排表得到用户的相似矩阵sim_mat 3).为每个用户推荐产品: 3.1).求用户u买过的brand和所有brand的差集得到用户u没有买过的物品集合brand_unused; 3.2).用户u对每一个没用过的物品i的兴趣p(u,i): 3.2.1).找到与用户u最近的k个用户 对于每一个没用过的物品i: 3.2.2).找出这k个用户中对物品i有过行为的用户v[]√ 3.2.3).将用户u和v[j]的兴趣相似度累加 3.3).取前m个最感兴趣的brand推荐给用户;</span>
四、代码
UCF.cc(用户协同过滤核心代码):
#include<iostream> #include<fstream> #include<stdio.h> #include<map> #include<set> #include<vector> #include<cstdlib> #include<cmath> #include<cstring> #include<algorithm> using namespace std; const int MAX = 1000; class UserCF { private: int k , m ; //k: the most k persons interested in the brand i ; m : choose the former m brands which user u are most interested in map< int,int > userid_id; map< int,int > id_userid; map< int,set<int> > user_brands; map< int,set<int> > id_brands; map< int,set<int> > brand_ids; set<int> brand_all; map< int,set<int> > user_brand_rec; ifstream fin; ofstream fout; double sim_mat[MAX][MAX]; typedef struct sim_idx { double sim; int idx; bool operator > (const sim_idx &other) const { return sim > other.sim; } }sim_idx; typedef struct brand_interest { double Int; // Int = interest int brand; bool operator > (const brand_interest &other) const { return Int > other.Int; } }brand_interest; public: UserCF(int _k , int _m):k(_k),m(_m) { fin.open("user_brand_m123.txt"); fout.open("rec_result_by_m123.txt"); if(!fin||!fout) { cout<<"can not open the file"<<endl; exit(1); } //userid_id , id_userid , user_brands , brand_all int userid,brandid,i=0; while(fin>>userid>>brandid) { if( user_brands[userid].empty() ) { userid_id[userid] = i; id_userid[i] = userid; i++; } user_brands[userid].insert(brandid); brand_all.insert(brandid); } //id_brands map< int,set<int> > :: iterator it = user_brands.begin(); while( it!=user_brands.end() ) { id_brands[ userid_id[it->first] ] = it->second; it++; } bzero(sim_mat,0); } void get_sim_mat() { get_reverse_table(); map< int,set<int> > :: iterator it = brand_ids.begin(); while(it!=brand_ids.end()) { vector<int> tmp( it->second.begin(),it->second.end() ); int len = tmp.size(); //for each brand , traverse all two pair users , sim_mat increment for(int i=0;i<len;i++) for(int j=i+1;j<len;j++) { sim_mat[ tmp[i] ][ tmp[j] ]+=1; sim_mat[ tmp[j] ][ tmp[i] ]+=1; } it++; } int len = id_userid.size(); for(int i=0;i<len;i++) for(int j=0;j<len;j++) { sim_mat[i][j] /= sqrt( user_brands[ id_userid[i] ].size() * user_brands[ id_userid[j] ].size() ); sim_mat[j][i] = sim_mat[i][j]; } cout<<endl; } //brand_ids - brand : userid1,userid2,userid3... void get_reverse_table() { map< int,set<int> > :: iterator it = id_brands.begin(); while( it!=id_brands.end() ) { set<int> tmp = it->second; set<int> :: iterator it2 = tmp.begin(); while(it2!=tmp.end()) { brand_ids[*it2].insert(it->first); it2++; } it++; } } set<int> get_rec_brand_set_by_user(int userid) { //3.1 set<int> brand_unused; /* set_difference:find different set between two set * function : get brand set that userid has never bought before */ set_difference(brand_all.begin(),brand_all.end(),user_brands[userid].begin(),user_brands[userid].end(),inserter( brand_unused , brand_unused.begin() ) ); sim_idx simidx; vector<sim_idx> vec_sim_idx; int len = userid_id.size(); int id = userid_id[userid]; for(int i=0;i<len;i++) { simidx.sim=sim_mat[id][i]; simidx.idx=i; vec_sim_idx.push_back(simidx); } sort( vec_sim_idx.begin(),vec_sim_idx.end(),greater<sim_idx>() ); //order by desc //3.2.1 set<int> rec_ids; vector<sim_idx> :: iterator it = vec_sim_idx.begin(); for(int i=0;i<k;i++) { rec_ids.insert( (*it).idx ); it++; } set<int> rec_brand; set<int> :: iterator itt = brand_unused.begin(); vector<brand_interest> vec_bi; //userid's interest level toward brand brand_interest bi; while( itt!=brand_unused.end() ) { //3.2.2 vector<int> newset; // or set<int> newset set<int> ids = brand_ids[*itt]; set_intersection(rec_ids.begin(),rec_ids.end(),ids.begin(),ids.end(),inserter( newset,newset.begin() )); if(newset.empty()) { itt++; continue; } double interest = 0.0; int len = newset.size(); for(int i=0;i<len;i++) { interest += sim_mat[ userid_id[userid] ][ newset[i] ]; } //3.2.3 bi.brand = *itt; bi.Int = interest; vec_bi.push_back(bi); itt++; }//while //3.3 for(int i=0;i<m&&i<vec_bi.size();i++) { rec_brand.insert(vec_bi[i].brand); } return rec_brand; } void recommend() { map< int,int > :: iterator it = userid_id.begin(); while( it!=userid_id.end() ) { user_brand_rec[it->first] = get_rec_brand_set_by_user(it->first); it++; } }//recommend void print() { //write recommendation result <user,brand> to file map< int,set<int> > :: iterator it = user_brand_rec.begin(); while( it!=user_brand_rec.end() ) { set<int> tmp = it->second; set<int> :: iterator it2 = tmp.begin(); while(it2!=tmp.end()) { fout<<it->first<<" "<<*it2<<endl; it2++; } it++; } }//print ~UserCF() { userid_id.clear(); user_brands.clear(); id_brands.clear(); brand_ids.clear(); brand_all.clear(); user_brand_rec.clear(); fin.close(); fout.close(); } }; int main(int argc , char *argv[]) { if(argc!=3) { cout<<"Usage : ./a.out k m"<<endl; exit(1); } int k = atoi(argv[1]) ; int m = atoi(argv[2]) ; UserCF ucf(k,m); ucf.get_sim_mat(); ucf.recommend(); #if 1 ucf.print(); #endif return 0; }
cal_precision_recall.cc(计算准确率和召回率代码):
#include<iostream> #include<fstream> #include<map> #include<set> #include<algorithm> using namespace std; int main() { ifstream fin , fin1; fin.open("rec_result_by_m123.txt"); fin1.open("user_brand_m4.txt"); if(!fin||!fin1) { cout<<"can not open file"<<endl; exit(1); } map< int,set<int> > fore_user_brands; //recommendation result map< int,set<int> > real_user_brands; //real result int user , brand; while(fin>>user>>brand) { fore_user_brands[user].insert(brand); } while(fin1>>user>>brand) { real_user_brands[user].insert(brand); } double precision = 0 , recall = 0; double fore_total_brand = 0; double real_total_brand = 0; double intersection = 0; double F = 0; map< int,set<int> > :: iterator it = fore_user_brands.begin(); map< int,set<int> > :: iterator itt = real_user_brands.begin(); while(it!=fore_user_brands.end()) { fore_total_brand += (it->second).size(); it++; } while(itt!=real_user_brands.end()) { real_total_brand += (itt->second).size(); itt++; } it = fore_user_brands.begin(); while(it!=fore_user_brands.end()) { set<int> fore , real , newset; fore = it->second; real = real_user_brands[it->first]; //set_intersection:get intersection of two sets set_intersection(fore.begin(),fore.end(),real.begin(),real.end(),inserter(newset,newset.begin())); intersection += newset.size(); if(newset.size()!=0) { set<int> :: iterator itnew = newset.begin(); cout<<"user : "<<it->first<<" brand : "; while(itnew!=newset.end()) { cout<<*itnew<<" "; itnew++; } cout<<endl; } it++; } precision = intersection/fore_total_brand; recall = intersection/real_total_brand; F = (2*precision*recall)/(precision+recall); cout<<"fore_total_brand = "<<fore_total_brand<<endl; cout<<"real_total_brand = "<<real_total_brand<<endl; cout<<"intersection = "<<intersection<<endl; cout<<"precision = "<<precision<<endl; cout<<"recall = "<<recall<<endl; cout<<"F = "<<F<<endl; return 0; }
makefile:
target: g++ UCF.cc ./a.out 5 5 g++ cal_precision_recall.cc ./a.out clean: rm result.txt a.out
实验结果:
k=5,m=5(k即对某个品牌最感兴趣的前k个人;m即推荐给用户的前m个品牌):
源代码以及数据:http://yunpan.cn/cgqHHyV3Q8bIX (提取码:46cc)
UCF暂时就介绍到这里,当然这个算法还有很多可以改进的,比如在计算用户相似度的时候可以加上时间上的因素,还有惩罚用户u和用户v共同兴趣列表中热门物品对他们相似度的影响等。
参考资料:
1.《推荐系统实战》
2.www.cplusplus.com
转载注明出处:http://blog.csdn.net/lavorange/article/details/22584373
【推荐系统实战】:C++实现基于用户的协同过滤(UserCollaborativeFilter)