首页 > 代码库 > 推荐系统介绍:(协同过滤)—Intro to Recommender Systems: Collaborative Filtering

推荐系统介绍:(协同过滤)—Intro to Recommender Systems: Collaborative Filtering

本文试验前期准备:

  1. MovieLens  ml-100k数据集
  2. Jupyter notebook
  3. themoviedb.org API key

 

 

  1. 添加python引用
    import numpy as np
    import pandas as pd
  2. 进入MovieLens  ml-100k数据存放目录
    cd F:\Master\MachineLearning\kNN\ml-100k
  3. 读取数据:u.data每行数据分为userid,itemid,rating,时间戳四部分
    names = [user_id, item_id, rating, timestamp]
    df = pd.read_csv(u.data, sep=\t, names=names)
    df.head()

     

     user_iditem_idratingtimestamp
    0 196 242 3 881250949
    1 186 302 3 891717742
    2 22 377 1 878887116
    3 244 51 2 880606923
    4 166 346 1 886397596
  4. 统计文件中用户总数与电影总数
    n_users = df.user_id.unique().shape[0]
    n_items = df.item_id.unique().shape[0]
    print str(n_users) +  users
    print str(n_items) +  items
    943 users
    1682 items
  5. 构造 用户-电影评分矩阵
    ratings = np.zeros((n_users, n_items))
    for row in df.itertuples():
        ratings[row[1]-1, row[2]-1] = row[3]
    ratings
    array([[ 5.,  3.,  4., ...,  0.,  0.,  0.],
           [ 4.,  0.,  0., ...,  0.,  0.,  0.],
           [ 0.,  0.,  0., ...,  0.,  0.,  0.],
           ..., 
           [ 5.,  0.,  0., ...,  0.,  0.,  0.],
           [ 0.,  0.,  0., ...,  0.,  0.,  0.],
           [ 0.,  5.,  0., ...,  0.,  0.,  0.]])
  6. 计算数据稀疏度
    sparsity = float(len(ratings.nonzero()[0]))
    sparsity /= (ratings.shape[0] * ratings.shape[1])
    sparsity *= 100
    print Sparsity: {:4.2f}%.format(sparsity)

    Sparsity: 6.30% 
    数据稀疏度:6.3%

  7.  把每个用户对电影的10个评分拿出来,将数据分为训练集与测试机两部分
    def train_test_split(ratings):
        test = np.zeros(ratings.shape)
        train = ratings.copy()
        for user in xrange(ratings.shape[0]):
            test_ratings = np.random.choice(ratings[user, :].nonzero()[0], 
                                            size=10, 
                                            replace=False)
            train[user, test_ratings] = 0.
            test[user, test_ratings] = ratings[user, test_ratings]
            
        # Test and training are truly disjoint
        assert(np.all((train * test) == 0)) 
        return train, test
    train, test = train_test_split(ratings)

     

  8. 计算user或item的相似性,fast_similarity使用NumPy数学函数,计算速度更快
    def slow_similarity(ratings, kind=user):
        if kind == user:
            axmax = 0
            axmin = 1
        elif kind == item:
            axmax = 1
            axmin = 0
        sim = np.zeros((ratings.shape[axmax], ratings.shape[axmax]))
        for u in xrange(ratings.shape[axmax]):
            for uprime in xrange(ratings.shape[axmax]):
                rui_sqrd = 0.
                ruprimei_sqrd = 0.
                for i in xrange(ratings.shape[axmin]):
                    sim[u, uprime] = ratings[u, i] * ratings[uprime, i]
                    rui_sqrd += ratings[u, i] ** 2
                    ruprimei_sqrd += ratings[uprime, i] ** 2
                sim[u, uprime] /= rui_sqrd * ruprimei_sqrd
        return sim
    
    def fast_similarity(ratings, kind=user, epsilon=1e-9):
        # epsilon -> small number for handling dived-by-zero errors
        if kind == user:
            sim = ratings.dot(ratings.T) + epsilon
        elif kind == item:
            sim = ratings.T.dot(ratings) + epsilon
        norms = np.array([np.sqrt(np.diagonal(sim))])
        return (sim / norms / norms.T)
    %timeit fast_similarity(train, kind=user)
    1 loop, best of 3: 171 ms per loop
  9.  分别计算user相似性和item相似性,并输出item相似性矩阵的前4行

    user_similarity = fast_similarity(train, kind=user)
    item_similarity = fast_similarity(train, kind=item)
    print item_similarity[:4, :4]
    [[ 1.          0.42176871  0.3440934   0.4551558 ]
     [ 0.42176871  1.          0.2889324   0.48827863]
     [ 0.3440934   0.2889324   1.          0.33718518]
     [ 0.4551558   0.48827863  0.33718518  1.        ]]
  10.  预测评分,predict_fast_simple使用NumPy数学函数,计算更块

    def predict_slow_simple(ratings, similarity, kind=user):
        pred = np.zeros(ratings.shape)
        if kind == user:
            for i in xrange(ratings.shape[0]):
                for j in xrange(ratings.shape[1]):
                    pred[i, j] = similarity[i, :].dot(ratings[:, j])                             /np.sum(np.abs(similarity[i, :]))
            return pred
        elif kind == item:
            for i in xrange(ratings.shape[0]):
                for j in xrange(ratings.shape[1]):
                    pred[i, j] = similarity[j, :].dot(ratings[i, :].T)                             /np.sum(np.abs(similarity[j, :]))
    
            return pred
    
    def predict_fast_simple(ratings, similarity, kind=user):
        if kind == user:
            return similarity.dot(ratings) / np.array([np.abs(similarity).sum(axis=1)]).T
        elif kind == item:
            return ratings.dot(similarity) / np.array([np.abs(similarity).sum(axis=1)])
    %timeit predict_slow_simple(train, user_similarity, kind=user)
    1 loop, best of 3: 1min 52s per loop
    %timeit predict_fast_simple(train, user_similarity, kind=user)
    1 loop, best of 3: 279 ms per loop 
  11.  使用sklearn计算MSE,首先去除数据矩阵中的无效0值,然后直接调用sklearn里面的mean_squared_error函数计算MSE

    from sklearn.metrics import mean_squared_error
    
    def get_mse(pred, actual):
        # Ignore nonzero terms.
        pred = pred[actual.nonzero()].flatten()
        actual = actual[actual.nonzero()].flatten()
        return mean_squared_error(pred, actual)
    item_prediction = predict_fast_simple(train, item_similarity, kind=item)
    user_prediction = predict_fast_simple(train, user_similarity, kind=user)
    
    print User-based CF MSE:  + str(get_mse(user_prediction, test))
    print Item-based CF MSE:  + str(get_mse(item_prediction, test))
    User-based CF MSE: 8.44170489251
    Item-based CF MSE: 11.5717812485
  12.  为提高预测的MSE,可以只考虑使用与目标用户最相似的k个用户的数据,进行Top-k预测并进行MSE计算

    def predict_topk(ratings, similarity, kind=user, k=40):
        pred = np.zeros(ratings.shape)
        if kind == user:
            for i in xrange(ratings.shape[0]):
                top_k_users = [np.argsort(similarity[:,i])[:-k-1:-1]]
                for j in xrange(ratings.shape[1]):
                    pred[i, j] = similarity[i, :][top_k_users].dot(ratings[:, j][top_k_users]) 
                    pred[i, j] /= np.sum(np.abs(similarity[i, :][top_k_users]))
        if kind == item:
            for j in xrange(ratings.shape[1]):
                top_k_items = [np.argsort(similarity[:,j])[:-k-1:-1]]
                for i in xrange(ratings.shape[0]):
                    pred[i, j] = similarity[j, :][top_k_items].dot(ratings[i, :][top_k_items].T) 
                    pred[i, j] /= np.sum(np.abs(similarity[j, :][top_k_items]))        
        
        return pred
    pred = predict_topk(train, user_similarity, kind=user, k=40)
    print Top-k User-based CF MSE:  + str(get_mse(pred, test))
    
    pred = predict_topk(train, item_similarity, kind=item, k=40)
    print Top-k Item-based CF MSE:  + str(get_mse(pred, test))

     

    计算结果为:

    Top-k User-based CF MSE: 6.47059807493
    Top-k Item-based CF MSE: 7.75559095568

    相比之前的方法,MSE已经降低了不少。

  13. 为进一步降低MSE,这里尝试使用不同的k值寻找最小的MSE,使用matplotlib 可视化输出结果
    k_array = [5, 15, 30, 50, 100, 200]
    user_train_mse = []
    user_test_mse = []
    item_test_mse = []
    item_train_mse = []
    
    def get_mse(pred, actual):
        pred = pred[actual.nonzero()].flatten()
        actual = actual[actual.nonzero()].flatten()
        return mean_squared_error(pred, actual)
    
    for k in k_array:
        user_pred = predict_topk(train, user_similarity, kind=user, k=k)
        item_pred = predict_topk(train, item_similarity, kind=item, k=k)
        
        user_train_mse += [get_mse(user_pred, train)]
        user_test_mse += [get_mse(user_pred, test)]
        
        item_train_mse += [get_mse(item_pred, train)]
        item_test_mse += [get_mse(item_pred, test)]  
    %matplotlib inline
    import matplotlib.pyplot as plt
    import seaborn as sns
    sns.set()
    
    pal = sns.color_palette("Set2", 2)
    
    plt.figure(figsize=(8, 8))
    plt.plot(k_array, user_train_mse, c=pal[0], label=User-based train, alpha=0.5, linewidth=5)
    plt.plot(k_array, user_test_mse, c=pal[0], label=User-based test, linewidth=5)
    plt.plot(k_array, item_train_mse, c=pal[1], label=Item-based train, alpha=0.5, linewidth=5)
    plt.plot(k_array, item_test_mse, c=pal[1], label=Item-based test, linewidth=5)
    plt.legend(loc=best, fontsize=20)
    plt.xticks(fontsize=16);
    plt.yticks(fontsize=16);
    plt.xlabel(k, fontsize=30);
    plt.ylabel(MSE, fontsize=30);

     

     技术分享
    从图中可以看出,在测试数据集中,k为15和50时分别产生一个最小值对基于用户和基于项目的协同过滤

     

  14.  计算无偏置下均方根误差MSE
    def predict_nobias(ratings, similarity, kind=user):
        if kind == user:
            user_bias = ratings.mean(axis=1)
            ratings = (ratings - user_bias[:, np.newaxis]).copy()
            pred = similarity.dot(ratings) / np.array([np.abs(similarity).sum(axis=1)]).T
            pred += user_bias[:, np.newaxis]
        elif kind == item:
            item_bias = ratings.mean(axis=0)
            ratings = (ratings - item_bias[np.newaxis, :]).copy()
            pred = ratings.dot(similarity) / np.array([np.abs(similarity).sum(axis=1)])
            pred += item_bias[np.newaxis, :]
            
        return pred

     

    user_pred = predict_nobias(train, user_similarity, kind=user)
    print Bias-subtracted User-based CF MSE:  + str(get_mse(user_pred, test))
    
    item_pred = predict_nobias(train, item_similarity, kind=item)
    print Bias-subtracted Item-based CF MSE:  + str(get_mse(item_pred, test))
    Bias-subtracted User-based CF MSE: 8.67647634245
    Bias-subtracted Item-based CF MSE: 9.71148412222



  15. 将Top-k和偏置消除算法结合起来,计算基于User的和基于Item的MSE,并分别取k=5,15,30,50,100,200,将计算的MSE结果运用matplotlib 可视化输出
    def predict_topk_nobias(ratings, similarity, kind=user, k=40):
        pred = np.zeros(ratings.shape)
        if kind == user:
            user_bias = ratings.mean(axis=1)
            ratings = (ratings - user_bias[:, np.newaxis]).copy()
            for i in xrange(ratings.shape[0]):
                top_k_users = [np.argsort(similarity[:,i])[:-k-1:-1]]
                for j in xrange(ratings.shape[1]):
                    pred[i, j] = similarity[i, :][top_k_users].dot(ratings[:, j][top_k_users]) 
                    pred[i, j] /= np.sum(np.abs(similarity[i, :][top_k_users]))
            pred += user_bias[:, np.newaxis]
        if kind == item:
            item_bias = ratings.mean(axis=0)
            ratings = (ratings - item_bias[np.newaxis, :]).copy()
            for j in xrange(ratings.shape[1]):
                top_k_items = [np.argsort(similarity[:,j])[:-k-1:-1]]
                for i in xrange(ratings.shape[0]):
                    pred[i, j] = similarity[j, :][top_k_items].dot(ratings[i, :][top_k_items].T) 
                    pred[i, j] /= np.sum(np.abs(similarity[j, :][top_k_items])) 
            pred += item_bias[np.newaxis, :]
            
        return pred
    k_array = [5, 15, 30, 50, 100, 200]
    user_train_mse = []
    user_test_mse = []
    item_test_mse = []
    item_train_mse = []
    
    for k in k_array:
        user_pred = predict_topk_nobias(train, user_similarity, kind=user, k=k)
        item_pred = predict_topk_nobias(train, item_similarity, kind=item, k=k)
        
        user_train_mse += [get_mse(user_pred, train)]
        user_test_mse += [get_mse(user_pred, test)]
        
        item_train_mse += [get_mse(item_pred, train)]
        item_test_mse += [get_mse(item_pred, test)]  
    In [29]:
    pal = sns.color_palette("Set2", 2)
    
    plt.figure(figsize=(8, 8))
    plt.plot(k_array, user_train_mse, c=pal[0], label=User-based train, alpha=0.5, linewidth=5)
    plt.plot(k_array, user_test_mse, c=pal[0], label=User-based test, linewidth=5)
    plt.plot(k_array, item_train_mse, c=pal[1], label=Item-based train, alpha=0.5, linewidth=5)
    plt.plot(k_array, item_test_mse, c=pal[1], label=Item-based test, linewidth=5)
    plt.legend(loc=best, fontsize=20)
    plt.xticks(fontsize=16);
    plt.yticks(fontsize=16);
    plt.xlabel(k, fontsize=30);
    plt.ylabel(MSE, fontsize=30);

    技术分享



  16. 导入requests引用,通过requests.get方法获取链接地址
    import requests
    import json
    
    response = requests.get(http://us.imdb.com/M/title-exact?Toy%20Story%20(1995))
    print response.url.split(/)[-2]
    Movie ID 输出结果:tt0114709
  17. 这里需要使用themoviedb的API,通过查询themoviedb.org的API获取指定movie id 的海报文件存放路径
    # Get base url filepath structure. w185 corresponds to size of movie poster.
    headers = {Accept: application/json}
    payload = {api_key: ‘这里填入你的API} 
    response = requests.get("http://api.themoviedb.org/3/configuration", params=payload, headers=headers)
    response = json.loads(response.text)
    base_url = response[images][base_url] + w185
    
    def get_poster(imdb_url, base_url):
        # Get IMDB movie ID
        response = requests.get(imdb_url)
        movie_id = response.url.split(/)[-2]
        
        # Query themoviedb.org API for movie poster path.
        movie_url = http://api.themoviedb.org/3/movie/{:}/images.format(movie_id)
        headers = {Accept: application/json}
        payload = {api_key: ‘这里填入你的API} 
        response = requests.get(movie_url, params=payload, headers=headers)
        try:
            file_path = json.loads(response.text)[posters][0][file_path]
        except:
            # IMDB movie ID is sometimes no good. Need to get correct one.
            movie_title = imdb_url.split(?)[-1].split(()[0]
            payload[query] = movie_title
            response = requests.get(http://api.themoviedb.org/3/search/movie, params=payload, headers=headers)
            movie_id = json.loads(response.text)[results][0][id]
            payload.pop(query, None)
            movie_url = http://api.themoviedb.org/3/movie/{:}/images.format(movie_id)
            response = requests.get(movie_url, params=payload, headers=headers)
            file_path = json.loads(response.text)[posters][0][file_path]
            
        return base_url + file_path
    from IPython.display import Image
    from IPython.display import display
    
    toy_story = http://us.imdb.com/M/title-exact?Toy%20Story%20(1995)
    Image(url=get_poster(toy_story, base_url))

     

    直接输出了电影的海报图片技术分享

     

  18. 加载MovieLens中u.data文件中的电影信息,根据给定的电影信息,计算最相似的k个电影,输出它们的海报

    # Load in movie data
    idx_to_movie = {}
    with open(u.item, r) as f:
        for line in f.readlines():
            info = line.split(|)
            idx_to_movie[int(info[0])-1] = info[4]
            
    def top_k_movies(similarity, mapper, movie_idx, k=6):
        return [mapper[x] for x in np.argsort(similarity[movie_idx,:])[:-k-1:-1]]
    idx = 0 # Toy Story
    movies = top_k_movies(item_similarity, idx_to_movie, idx)
    posters = tuple(Image(url=get_poster(movie, base_url)) for movie in movies)

     

    display(*posters)


  19. 输出id为1的电影(GoldenEye)的最相似的k(k默认为6)部电影海报
    idx = 1 # GoldenEye
    movies = top_k_movies(item_similarity, idx_to_movie, idx)
    posters = tuple(Image(url=get_poster(movie, base_url)) for movie in movies)
    display(*posters)

     

  20. 输出id为2的电影(Muppet Treasure Island)的最相似的k(k默认为6)部电影海报
    idx = 20 # Muppet Treasure Island
    movies = top_k_movies(item_similarity, idx_to_movie, idx)
    posters = tuple(Image(url=get_poster(movie, base_url)) for movie in movies)
    display(*posters)

     

  21. 输出id为20的电影(Muppet Treasure Island)的最相似的k(k默认为6)部电影海报
    idx = 20 # Muppet Treasure Island
    movies = top_k_movies(item_similarity, idx_to_movie, idx)
    posters = tuple(Image(url=get_poster(movie, base_url)) for movie in movies)
    display(*posters)

     

  22. 输出id为40的电影(Billy Madison)的最相似的k(k默认为6)部电影海报
    idx = 40 # Billy Madison
    movies = top_k_movies(item_similarity, idx_to_movie, idx)
    posters = tuple(Image(url=get_poster(movie, base_url)) for movie in movies)
    display(*posters)
  23. 有时候现在这个的推荐结果似乎并不总是很好,Star Wars最相似的电影是Toy Story?Star Wars这类很受欢迎的电影在系统中预测评分很高,可以考虑运用一个不同的相似度度量方法——pearson相关度来移除一些偏置
    from sklearn.metrics import pairwise_distances
    # Convert from distance to similarity
    item_correlation = 1 - pairwise_distances(train.T, metric=correlation)
    item_correlation[np.isnan(item_correlation)] = 0.

     

  24. 再此分别对id为0,1,20,40的电影进行最相似的k部电影预测
    idx = 0 # Toy Story
    movies = top_k_movies(item_correlation, idx_to_movie, idx)
    posters = tuple(Image(url=get_poster(movie, base_url)) for movie in movies)
    display(*posters)
    idx = 1 # GoldenEye
    movies = top_k_movies(item_correlation, idx_to_movie, idx)
    posters = tuple(Image(url=get_poster(movie, base_url)) for movie in movies)
    display(*posters)
    idx = 20 # Muppet Treasure Island
    movies = top_k_movies(item_correlation, idx_to_movie, idx)
    posters = tuple(Image(url=get_poster(movie, base_url)) for movie in movies)
    display(*posters)
    idx = 40 # Billy Madison
    movies = top_k_movies(item_correlation, idx_to_movie, idx)
    posters = tuple(Image(url=get_poster(movie, base_url)) for movie in movies)
    display(*posters)

     

 本文参考自:http://blog.ethanrosenthal.com/2015/11/02/intro-to-collaborative-filtering/

推荐系统介绍:(协同过滤)—Intro to Recommender Systems: Collaborative Filtering