首页 > 代码库 > HDU 4055 Number String (计数DP)

HDU 4055 Number String (计数DP)

题意:由数字1到n组成的所有排列中,问满足题目所给的n-1个字符的排列有多少个,如果第i字符是‘I’表示排列中的第i-1个数是小于第i个数的。

如果是‘D’,则反之。

析:dp[i][j] 表示前 i 个数以 j 结尾有多少个,然后如果是 I ,那么就好,就是 i-1 中的前j-1项和,如果是 D,那就更好玩了,我们看这样一个性质,奇妙!

假设你有一个排列是 1 3 4 ,然后下一个数是 2,那么怎么放呢,我们把 排列中每一个大于等于 2的都加1,并不会影响这个排列,然后再把这个2放上,

因为我们可以得到 dp[i][j] = dp[i-1][i-1] + dp[i-1][i-2] + ... + dp[i-1][j],这个我们可以用前缀和来优化 sum[i][j] 表示前 i 个结尾小于等于 j有总和。

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")#include <cstdio>#include <string>#include <cstdlib>#include <cmath>#include <iostream>#include <cstring>#include <set>#include <queue>#include <algorithm>#include <vector>#include <map>#include <cctype>#include <cmath>#include <stack>//#include <tr1/unordered_map>#define freopenr freopen("in.txt", "r", stdin)#define freopenw freopen("out.txt", "w", stdout)using namespace std;//using namespace std :: tr1;typedef long long LL;typedef pair<int, int> P;const int INF = 0x3f3f3f3f;const double inf = 0x3f3f3f3f3f3f;const LL LNF = 0x3f3f3f3f3f3f;const double PI = acos(-1.0);const double eps = 1e-8;const int maxn = 1e3 + 5;const int mod = 1e9 + 7;const int N = 1e6 + 5;const int dr[] = {-1, 0, 1, 0, 1, 1, -1, -1};const int dc[] = {0, 1, 0, -1, 1, -1, 1, -1};const char *Hex[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};inline LL gcd(LL a, LL b){  return b == 0 ? a : gcd(b, a%b); }int n, m;const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};inline int Min(int a, int b){ return a < b ? a : b; }inline int Max(int a, int b){ return a > b ? a : b; }inline LL Min(LL a, LL b){ return a < b ? a : b; }inline LL Max(LL a, LL b){ return a > b ? a : b; }inline bool is_in(int r, int c){    return r >= 0 && r < n && c >= 0 && c < m;}int dp[maxn][maxn], sum[maxn][maxn];char s[maxn];int main(){    while(scanf("%s", s) == 1){        n = strlen(s);        sum[1][0] = sum[0][0] = 0;        sum[1][1] = dp[1][1] = 1;        for(int i = 2; i <= n+1; ++i){            for(int j = 1; j <= i; ++j){                if(s[i-2] == ‘I‘)  dp[i][j] = sum[i-1][j-1];                else if(s[i-2] == ‘D‘)  dp[i][j] = (sum[i-1][i-1] - sum[i-1][j-1] + mod) % mod;                else dp[i][j] = sum[i-1][i-1];                sum[i][j] = (sum[i][j-1] + dp[i][j]) % mod;            }        }        printf("%d\n", sum[n+1][n+1]);    }    return 0;}

 

HDU 4055 Number String (计数DP)