首页 > 代码库 > HDU 1847 Good Luck in CET-4 Everybody! (博弈论sg)

HDU 1847 Good Luck in CET-4 Everybody! (博弈论sg)

Good Luck in CET-4 Everybody!

Problem Description
大学英语四级考试就要来临了,你是不是在紧张的复习?也许紧张得连短学期的ACM都没工夫练习了,反正我知道的Kiki和Cici都是如此。当然,作为在考场浸润了十几载的当代大学生,Kiki和Cici更懂得考前的放松,所谓“张弛有道”就是这个意思。这不,Kiki和Cici在每天晚上休息之前都要玩一会儿扑克牌以放松神经。
“升级”?“双扣”?“红五”?还是“斗地主”?
当然都不是!那多俗啊~
作为计算机学院的学生,Kiki和Cici打牌的时候可没忘记专业,她们打牌的规则是这样的:
1、  总共n张牌;
2、  双方轮流抓牌;
3、  每人每次抓牌的个数只能是2的幂次(即:1,2,4,8,16…)
4、  抓完牌,胜负结果也出来了:最后抓完牌的人为胜者;
假设Kiki和Cici都是足够聪明(其实不用假设,哪有不聪明的学生~),并且每次都是Kiki先抓牌,请问谁能赢呢?
当然,打牌无论谁赢都问题不大,重要的是马上到来的CET-4能有好的状态。

Good luck in CET-4 everybody!
 

Input
输入数据包含多个测试用例,每个测试用例占一行,包含一个整数n(1<=n<=1000)。
 

Output
如果Kiki能赢的话,请输出“Kiki”,否则请输出“Cici”,每个实例的输出占一行。
 

Sample Input
1 3
 

Sample Output
Kiki Cici
 

Author
lcy
 

Source
ACM Short Term Exam_2007/12/13
 

解题思路:

1、用博弈论sg函数可以解


根据NP图的关系,发现 n%3=0时,Cici赢,否则Kiki赢


2、用DP去解,用dp[n][f] 表示还剩n张牌时,f先走,谁赢。


解题代码:

1、sg找规律

#include <iostream>
#include <cstdio>
using namespace std;

int main(){
    int n;
    while(scanf("%d",&n)!=EOF){
        if(n%3==0) printf("Cici\n");
        else printf("Kiki\n");
    }
    return 0;
}

2、DP方法

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;

const int maxn=1100;
int dp[maxn][2];

int DP(int n,int f){
    if(n<=0) return 1-f;
    if(dp[n][f]!=-1) return dp[n][f];
    if(f==0){
        int ans=1;
        for(int i=1; i<=n ;i=(i<<1) ){
            if(DP(n-i,1-f)<ans ) ans=DP(n-i,1-f);
        }
        return dp[n][f]=ans;
    }else{
        int ans=0;
        for(int i=1; i<=n ;i=(i<<1) ){
            if(DP(n-i,1-f)>ans ) ans=DP(n-i,1-f);
        }
        return dp[n][f]=ans;
    }
}

int main(){
    memset(dp,-1,sizeof(dp));
    int n;
    while(scanf("%d",&n)!=EOF){
        if(DP(n,0)==0) printf("Kiki\n");
        else printf("Cici\n");
    }
    return 0;
}