首页 > 代码库 > 清华版CG 实验5 OpenGL模型视图变换
清华版CG 实验5 OpenGL模型视图变换
1.实验目的:
理解掌握OpenGL程序的模型视图变换。
2.实验内容:
(1)阅读实验原理,运行示范实验代码,理解掌握OpenGL程序的模型视图变换;
(2)根据示范代码,尝试完成实验作业;
3.实验原理:
在OpenGL程序中,视图变换必须出现在模型变换之前,但可以在绘图之前的任何时候执行投影变换和视口变换。
1.在指定的视图变换之前,应该使用glLoadIdentity()函数把当前矩阵设置为单位矩阵。
2.在载入单位矩阵之后,使用gluLookAt()函数指定视图变换。如果程序没有调用gluLookAt(),那么照相机会设定为一个默认的位置和方向。在默认的情况下,照相机位于原点,指向Z轴负方向,朝上向量为(0,1,0)。
3.一般而言,display()函数包括:视图变换 + 模型变换 + 绘制图形的函数(如glutWireCube())。display()会在窗口被移动或者原来先遮住这个窗口的东西被移开时,被重复调用,并经过适当变换,保证绘制的图形是按照希望的方式进行绘制。
4.在调用glFrustum()设置投影变换之前,在reshape()函数中有一些准备工作:视口变换 + 投影变换 + 模型视图变换。由于投影变换,视口变换共同决定了场景是如何映射到计算机的屏幕上的,而且它们都与屏幕的宽度,高度密切相关,因此应该放在reshape()中。reshape()会在窗口初次创建,移动或改变时被调用。
总结起来,OpenGL中矩阵坐标之间的关系如下:
物体世界坐标*模型视图矩阵*投影矩阵*透视除法*规范化设备坐标→窗口坐标
以后面的示范代码为例:
(1)视图变换函数gluLookAt(0.0,0.0,5.0,0.0,0.0,0.0,0.0,1.0,0.0,)设置照相机的位置
把照相机放在(0,0,5),镜头瞄准(0,0,0),朝上向量定为(0,1,0)朝上向量为照相机指定了一个唯一的方向。如果没有调用gluLookAt,照相机就设定一个默认的位置和方向,在默认情况下,照相机位于原点,指向Z轴的负方向,朝上向量为(0,1,0)
glLoadIdentity()函数把当前矩阵设置为单位矩阵。
(2)使用模型变换的目的是设置模型的位置和方向
(3)投影变换,指定投影变换类似于为照相机选择镜头,可以认为这种变换的目的是确定视野,并因此确定哪些物体位于视野之内以及他们能够被看到的程度。
除了考虑视野之外,投影变换确定物体如何投影到屏幕上,OpenGL提供了两种基本类型的投影,1、透视投影:远大近小;2、正投影:不影响相对大小,一般用于建筑和CAD应用程序中
(4)视口变换
视口变换指定一个图像在屏幕上所占的区域
(5)绘制场景
4.示范代码:
#include <GL/glut.h>
#include <stdlib.h>
static int year = 0, day = 0;
void init(void)
{
glClearColor (0.0, 0.0, 0.0, 0.0);
glShadeModel (GL_FLAT);
}
void display(void)
{
glClear (GL_COLOR_BUFFER_BIT);
glColor3f (1.0, 1.0, 1.0);
glPushMatrix();
glutWireSphere(1.0, 20, 16); /* draw sun */
glRotatef ((GLfloat) year, 0.0, 1.0, 0.0);
glTranslatef (2.0, 0.0, 0.0);
glRotatef ((GLfloat) day, 0.0, 1.0, 0.0);
glutWireSphere(0.2, 10, 8); /* draw smaller planet */
glPopMatrix();
glutSwapBuffers();
}
void reshape (int w, int h)
{
glViewport (0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
gluPerspective(60.0, (GLfloat) w/(GLfloat) h, 1.0, 20.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
}
void keyboard (unsigned char key, int x, int y)
{
switch (key) {
case ‘d‘:
day = (day + 10) % 360;
glutPostRedisplay();
break;
case ‘D‘:
day = (day - 10) % 360;
glutPostRedisplay();
break;
case ‘y‘:
year = (year + 5) % 360;
glutPostRedisplay();
break;
case ‘Y‘:
year = (year - 5) % 360;
glutPostRedisplay();
break;
case 27:
exit(0);
break;
default:
break;
}
}
int main(int argc, char** argv)
{
glutInit(&argc, argv);
glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB);
glutInitWindowSize (500, 500);
glutInitWindowPosition (100, 100);
glutCreateWindow (argv[0]);
init ();
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutKeyboardFunc(keyboard);
glutMainLoop();
return 0;
}
代码说明:
上面所描述的这个程序绘制一个简单的太阳系,其中有一颗行星和一颗太阳,它们是用同一个球体绘制函数绘制的。为了编写这个程序,需要使用glRtate*()函数让这颗行星绕太阳旋转,并且绕自身的轴旋转。还需要使用glTranslate*()函数让这颗行星远离太阳系原点,移动到它自己的轨道上。记住,可以在glutWireSphere()函数中使用适当的参数,在绘制两个球体时指定球体的大小。
为了绘制这个太阳系,首先需要设置一个投影变换和一个视图变换。在这个例子中,可以使用glutPerspective()和gluLookat().
绘制太阳比较简单,因为它应该位于全局固定坐标系统的原点,也就是球体函数进行绘图的位置。因此,绘制太阳时并不需要移动,可以使用glRotate*()函数绕一个任意的轴旋转。绘制一颗绕太阳旋转的行星要求进行几次模型变换。这颗行星需要每天绕自己的轴旋转一周,每年沿着自己的轨道绕太阳旋转一周。
为了确定模型变换的顺序,可以从局部坐标系统的角度考虑。首先,调用初始的glRotate*()函数对局部坐标系统进行旋转,这个局部坐标系统最初与全局固定坐标系统是一致的。接着,可以调用glTranslate*()把局部坐标系统移动到行星轨道上的一个位置。移动的距离应该等于轨道的半径。因此,第一个glRotate*()函数实际上确定了这颗行星从什么地方开始绕太阳旋转(或者说,从一年的什么时候开始)。
第二次调用glRotate*()使局部坐标轴进行旋转,因此确定了这颗行星在一天中的时间。当调用了这些函数变换之后,就可以绘制这颗行星了。
5. 实验提高
(1)尝试在太阳系中增加一颗卫星,一颗行星。提示:使用glPushMatrix()和glPopMatrix()在适当的时候保存和恢复坐标系统的位置。如果打算绘制几颗卫星绕同一颗行星旋转,需要在移动每颗卫星的位置之前保存坐标系统,并在绘制每颗卫星之后恢复坐标系统。
(2)尝试把行星的轴倾斜。