首页 > 代码库 > bjoj1911 [Apio2010] 序列分割

bjoj1911 [Apio2010] 序列分割

1911: [Apio2010]特别行动队

Time Limit: 4 Sec  Memory Limit: 64 MB
Submit: 4486  Solved: 2140
[Submit][Status][Discuss]

Description

技术分享

Input

技术分享

Output

技术分享

Sample Input

4
-1 10 -20
2 2 3 4

Sample Output

9

HINT

技术分享

Source

 

[Submit][Status][Discuss]
 

转化条件,挖掘深入信息,答案其实就是等于k+1段两两相乘(乘法原理YY),与切的顺序无关,ans=ΣCj * (Ci-Cj);; (ans=ans=∑第 i 段×前 i-1 段的和);所以根据k的阶段来动态规划,令f[i][j]表示将前 j 个数分成 i 段的最大得分,那么就有f[i][j]=max{f[i?1][k]+C[k]×(C[j]?C[k])};然后使用滚动数组,斜率优化:注意C[i]有可能为0,(式子中有0),所以不用getx,用cale()函数相乘;

 1 #include<algorithm>
 2 #include<iostream>
 3 #include<iomanip>
 4 #include<cstdlib>
 5 #include<cstring>
 6 #include<cstdio>
 7 #include<vector>
 8 #include<cmath>
 9 #include<queue>
10 #include<stack>
11 #include<map>
12 #include<set>
13 #define ll long long
14 #define rep(i,a,b) for(register int i=a;i<=b;++i)
15 #define re register
16 using namespace std;
17 const int N=100010;
18 ll dp[2][N],C[N];
19 int n,q[N];
20 inline ll gi( )
21 {
22     ll ret=0;char ch=getchar();
23     while(ch<0||ch>9) ch=getchar();
24     while(ch>=0&&ch<=9) ret=ret*10+ch-0,ch=getchar();
25     return ret;
26 }
27 ll getnum(int now,int i,int bj) {
28     return dp[!bj][i] + C[i]*(C[now]-C[i]);
29 }
30 bool cale(int l1,int l2,int l3,int bj) {
31     ll b1= dp[!bj][l1]-C[l1]*C[l1],b2=dp[!bj][l2] - C[l2]*C[l2] , b3=dp[!bj][l3] - C[l3]*C[l3];// bug
32     return (b3-b2)*(C[l1]-C[l2]) <= (b2-b1)*(C[l2]-C[l3]);
33 }
34 int main( )
35 {
36 
37     n=gi();int k=gi();
38     rep(i,1,n) C[i]=gi(),C[i]+=C[i-1];
39     re int bj=1,hd,tl;
40     for(re int u=1;u<=k;u++) {
41         bj=!bj;
42         hd=tl=0;q[0]=0;
43         for(re int i=1;i<=n;i++) {
44             while(hd+2<=tl&&cale(q[tl-2],q[tl-1],q[tl],bj)) q[tl-1]=q[tl--];//
45             while(hd<tl&&getnum(i,q[hd],bj)<=getnum(i,q[hd+1],bj)) hd++;
46             dp[bj][i]=getnum(i,q[hd],bj);
47             q[++tl]=i;
48         }
49     }
50     printf("%lld",dp[bj][n]);
51     return 0;
52 }

 

bjoj1911 [Apio2010] 序列分割