首页 > 代码库 > opencv-霍夫变换

opencv-霍夫变换

霍夫变换(直线)

原理摘自:http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/imgproc/imgtrans/hough_lines/hough_lines.html

目标

在这个部分您将学习到:

  • 使用OpenCV的以下函数 HoughLines 和 HoughLinesP 来检测图像中的直线.

霍夫线变换

  1. 霍夫线变换是一种用来寻找直线的方法.
  2. 是用霍夫线变换之前, 首先要对图像进行边缘检测的处理,也即霍夫线变换的直接输入只能是边缘二值图像.

它是如何实现的?

  1. 众所周知, 一条直线在图像二维空间可由两个变量表示. 例如:

    1. 在 笛卡尔坐标系: 可由参数: (m,b) 斜率和截距表示.
    2. 在 极坐标系: 可由参数: (r,\theta) 极径和极角表示
    Line variables

    对于霍夫变换, 我们将用 极坐标系 来表示直线. 因此, 直线的表达式可为:

    y = \left ( -\dfrac{\cos \theta}{\sin \theta} \right ) x + \left ( \dfrac{r}{\sin \theta} \right )

    化简得: r = x \cos \theta + y \sin \theta

  2. 一般来说对于点 (x_{0}, y_{0}), 我们可以将通过这个点的一族直线统一定义为:

    r_{\theta} = x_{0} \cdot \cos \theta  + y_{0} \cdot \sin \theta

    这就意味着每一对 (r_{\theta},\theta) 代表一条通过点 (x_{0}, y_{0}) 的直线.

  3. 如果对于一个给定点 (x_{0}, y_{0}) 我们在极坐标对极径极角平面绘出所有通过它的直线, 将得到一条正弦曲线. 例如, 对于给定点 x_{0} = 8 and y_{0} = 6 我们可以绘出下图 (在平面 \theta - r):

    Polar plot of a the family of lines of a point

    只绘出满足下列条件的点 r > 0 and 0< \theta < 2 \pi.

  4. 我们可以对图像中所有的点进行上述操作. 如果两个不同点进行上述操作后得到的曲线在平面 \theta - r 相交, 这就意味着它们通过同一条直线. 例如, 接上面的例子我们继续对点: x_{1} = 9y_{1} = 4 和点 x_{2} = 12y_{2} = 3 绘图, 得到下图:

    Polar plot of the family of lines for three points

    这三条曲线在 \theta - r 平面相交于点 (0.925, 9.6), 坐标表示的是参数对 (\theta, r) 或者是说点 (x_{0}, y_{0}), 点 (x_{1}, y_{1}) 和点 (x_{2}, y_{2}) 组成的平面内的的直线.

  5. 那么以上的材料要说明什么呢? 这意味着一般来说, 一条直线能够通过在平面 \theta - r 寻找交于一点的曲线数量来 检测. 越多曲线交于一点也就意味着这个交点表示的直线由更多的点组成. 一般来说我们可以通过设置直线上点的 阈值 来定义多少条曲线交于一点我们才认为 检测 到了一条直线.

  6. 这就是霍夫线变换要做的. 它追踪图像中每个点对应曲线间的交点. 如果交于一点的曲线的数量超过了 阈值, 那么可以认为这个交点所代表的参数对 (\theta, r_{\theta}) 在原图像中为一条直线.

标准霍夫线变换和统计概率霍夫线变换

OpenCV实现了以下两种霍夫线变换:

  1. 标准霍夫线变换
  • 原理在上面的部分已经说明了. 它能给我们提供一组参数对 (\theta, r_{\theta}) 的集合来表示检测到的直线
  • 在OpenCV 中通过函数 HoughLines 来实现

  1. 统计概率霍夫线变换
  • 这是执行起来效率更高的霍夫线变换. 它输出检测到的直线的端点 (x_{0}, y_{0}, x_{1}, y_{1})
  • 在OpenCV 中它通过函数 HoughLinesP 来实现

代码:

// ConsoleApplication3_6_23.cpp : Defines the entry point for the console application.
//

#include "stdafx.h"
#include<opencv2/opencv.hpp>
#include<iostream>
#include<vector>
using namespace std;
using namespace cv;


int _tmain(int argc, _TCHAR* argv[])
{
	Mat src,gray,dst,result;


	src = http://www.mamicode.com/imread("test.png");>2、霍夫变换(圆)

// ConsoleApplication3_6_23.cpp : Defines the entry point for the console application.
//

#include "stdafx.h"
#include<opencv2/opencv.hpp>
#include<iostream>
#include<vector>
using namespace std;
using namespace cv;


int _tmain(int argc, _TCHAR* argv[])
{
	Mat src,gray,dst,result;
	src = http://www.mamicode.com/imread("test1.jpg");>

HoughCircles( src_gray, circles, CV_HOUGH_GRADIENT, 1, src_gray.rows/8, 200, 100, 0, 0 );

函数带有以下自变量:

  • src_gray: 输入图像 (灰度图)
  • circles: 存储下面三个参数: x_{c}, y_{c}, r 集合的容器来表示每个检测到的圆.
  • CV_HOUGH_GRADIENT: 指定检测方法. 现在OpenCV中只有霍夫梯度法
  • dp = 1: 累加器图像的反比分辨率
  • min_dist = src_gray.rows/8: 检测到圆心之间的最小距离
  • param_1 = 200: Canny边缘函数的高阈值
  • param_2 = 100: 圆心检测阈值.
  • min_radius = 0: 能检测到的最小圆半径, 默认为0.
  • max_radius = 0: 能检测到的最大圆半径, 默认为0
2、

cvCircle(CvArr* img, CvPoint center, int radius, CvScalar color, int thickness=1, int lineType=8, int shift=0)

img为图像指针,单通道多通道都行,不需要特殊要求

center为画圆的圆心坐标

radius为圆的半径

color为设定圆的颜色,比如用CV_RGB(255, 0,0)设置为红色

thickness为设置圆线条的粗细,值越大则线条越粗,为负数则是填充效果

3、void cvLine( CvArr* img,CvPoint pt1, CvPoint pt2, CvScalar color,int thickness=1,  int line_type=8, int shift=0 );

第一个参数img:要划的线所在的图像;

第二个参数pt1:直线起点

第二个参数pt2:直线终点

第三个参数color:直线的颜色 e.g:Scalor(0,0,255)

第四个参数thickness=1:线条粗细

第五个参数line_type=8, 

   8 (or 0) - 8-connected line(8邻接)连接 线。
   4 - 4-connected line(4邻接)连接线。

   CV_AA - antialiased 线条。

第六个参数:坐标点的小数点位数。

4、

vector<Vec4i> lines;
HoughLinesP(dst, lines, 1, CV_PI/180, 50, 50, 10 );

带有以下自变量:

  • dst: 边缘检测的输出图像. 它应该是个灰度图 (但事实上是个二值化图) * lines: 储存着检测到的直线的参数对 (x_{start}, y_{start}, x_{end}, y_{end}) 的容器
  • rho : 参数极径 r 以像素值为单位的分辨率. 我们使用 1 像素.
  • theta: 参数极角 \theta 以弧度为单位的分辨率. 我们使用 1度 (即CV_PI/180)
  • threshold: 要”检测” 一条直线所需最少的的曲线交点 * minLinLength: 能组成一条直线的最少点的数量. 点数量不足的直线将被抛弃.
  • maxLineGap: 能被认为在一条直线上的亮点的最大距离.

5、

vector<Vec2f> lines;
HoughLines(dst, lines, 1, CV_PI/180, 100, 0, 0 );

带有以下自变量:

  • dst: 边缘检测的输出图像. 它应该是个灰度图 (但事实上是个二值化图)
  • lines: 储存着检测到的直线的参数对 (r,\theta) 的容器 * rho : 参数极径 r 以像素值为单位的分辨率. 我们使用 1 像素.
  • theta: 参数极角 \theta 以弧度为单位的分辨率. 我们使用 1度 (即CV_PI/180)
  • threshold: 要”检测” 一条直线所需最少的的曲线交点
  • srn and stn: 参数默认为0. 查缺OpenCV参考文献来获取更多信息.