首页 > 代码库 > HDU 4324 Triangle LOVE (拓扑排序)
HDU 4324 Triangle LOVE (拓扑排序)
Triangle LOVE
Problem Description
Recently, scientists find that there is love between any of two people. For example, between A and B, if A don’t love B, then B must love A, vice versa. And there is no possibility that two people love each other, what a crazy world!
Now, scientists want to know whether or not there is a “Triangle Love” among N people. “Triangle Love” means that among any three people (A,B and C) , A loves B, B loves C and C loves A.
Your problem is writing a program to read the relationship among N people firstly, and return whether or not there is a “Triangle Love”.
Now, scientists want to know whether or not there is a “Triangle Love” among N people. “Triangle Love” means that among any three people (A,B and C) , A loves B, B loves C and C loves A.
Your problem is writing a program to read the relationship among N people firstly, and return whether or not there is a “Triangle Love”.
Input
The first line contains a single integer t (1 <= t <= 15), the number of test cases.
For each case, the first line contains one integer N (0 < N <= 2000).
In the next N lines contain the adjacency matrix A of the relationship (without spaces). Ai,j = 1 means i-th people loves j-th people, otherwise Ai,j = 0.
It is guaranteed that the given relationship is a tournament, that is, Ai,i= 0, Ai,j ≠ Aj,i(1<=i, j<=n,i≠j).
For each case, the first line contains one integer N (0 < N <= 2000).
In the next N lines contain the adjacency matrix A of the relationship (without spaces). Ai,j = 1 means i-th people loves j-th people, otherwise Ai,j = 0.
It is guaranteed that the given relationship is a tournament, that is, Ai,i= 0, Ai,j ≠ Aj,i(1<=i, j<=n,i≠j).
Output
For each case, output the case number as shown and then print “Yes”, if there is a “Triangle Love” among these N people, otherwise print “No”.
Take the sample output for more details.
Take the sample output for more details.
Sample Input
2 5 00100 10000 01001 11101 11000 5 01111 00000 01000 01100 01110
Sample Output
Case #1: Yes Case #2: No
Author
BJTU
Source
2012 Multi-University Training Contest 3
T组测试数据,每组数据一个n表示n个人,接下n*n的矩阵表示这些人之间的关系,输入一定满足若A不喜欢B则B一定喜欢A,且不会出现A和B相互喜欢的情况,问你这些人中是否存在三角恋。
解题思路:
拓扑排序思想很简单,就是找入度为0的点,放入队列,用队列来实现。
拓扑排序后判断是否有环存在,有环必然存在是三角恋。
证明:
假设存在一个n元环
首先,n必然>1,因为1元能算环吗,什么,自己喜欢自己?那不行,我们都很谦虚的!
然后,n=2时不可能,环的大小不会为2,有人问为什么?傻逼啊,因为题目自己说不会出现A和B相互喜欢的情况。
其次,n=3时,不要判断,3个人不就刚好三角恋了吗。
因此,n>3,证明 必然存在3元环就可以了。
下 证:
因为假设有环上三个相邻的点a-> b-> c,那么如果c->a间有边,就已经形成了一个三元环,如果c->a没边,那么a->c肯定有边,除去b,这样就形成了一个n-1元环,依次递推下去,最差递推到n=4时,得证。什么,不会递推下去?和我有关系吗?
解题代码:
#include <iostream> #include <cstdio> #include <vector> #include <queue> #include <string> using namespace std; const int maxn=2100; int n,degree[maxn]; vector <vector<int> > v; void input(){ v.clear(); scanf("%d\n",&n); v.resize(n); for(int i=0;i<=n;i++) degree[i]=0; for(int i=0;i<n;i++){ char st[maxn]; scanf("%s",st); for(int j=0;j<n;j++){ if(st[j]=='1'){ v[i].push_back(j); degree[j]++; } } } } void solve(){ int ans=0; queue <int> q; for(int i=0;i<n;i++){ if(degree[i]==0) q.push(i); } while(!q.empty()){ int s=q.front(); q.pop(); degree[s]--; ans++; for(int i=0;i<v[s].size();i++){ int d=v[s][i]; degree[d]--; if(degree[d]==0){ q.push(d); } } } if(ans!=n) printf("Yes\n"); else printf("No\n"); } int main(){ int t; scanf("%d",&t); for(int i=1;i<=t;i++){ input(); printf("Case #%d: ",i); solve(); } return 0; }
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。