首页 > 代码库 > hdu4324(拓扑排序)
hdu4324(拓扑排序)
Triangle LOVE
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 2138 Accepted Submission(s): 898
Problem Description
Recently, scientists find that there is love between any of two people. For example, between A and B, if A don’t love B, then B must love A, vice versa. And there is no possibility that two people love each other, what a crazy world!
Now, scientists want to know whether or not there is a “Triangle Love” among N people. “Triangle Love” means that among any three people (A,B and C) , A loves B, B loves C and C loves A.
Your problem is writing a program to read the relationship among N people firstly, and return whether or not there is a “Triangle Love”.
Now, scientists want to know whether or not there is a “Triangle Love” among N people. “Triangle Love” means that among any three people (A,B and C) , A loves B, B loves C and C loves A.
Your problem is writing a program to read the relationship among N people firstly, and return whether or not there is a “Triangle Love”.
Input
The first line contains a single integer t (1 <= t <= 15), the number of test cases.
For each case, the first line contains one integer N (0 < N <= 2000).
In the next N lines contain the adjacency matrix A of the relationship (without spaces). Ai,j = 1 means i-th people loves j-th people, otherwise Ai,j = 0.
It is guaranteed that the given relationship is a tournament, that is, Ai,i= 0, Ai,j ≠ Aj,i(1<=i, j<=n,i≠j).
For each case, the first line contains one integer N (0 < N <= 2000).
In the next N lines contain the adjacency matrix A of the relationship (without spaces). Ai,j = 1 means i-th people loves j-th people, otherwise Ai,j = 0.
It is guaranteed that the given relationship is a tournament, that is, Ai,i= 0, Ai,j ≠ Aj,i(1<=i, j<=n,i≠j).
Output
For each case, output the case number as shown and then print “Yes”, if there is a “Triangle Love” among these N people, otherwise print “No”.
Take the sample output for more details.
Take the sample output for more details.
Sample Input
2 5 00100 10000 01001 11101 11000 5 01111 00000 01000 01100 01110
Sample Output
Case #1: Yes Case #2: No
Author
BJTU
题解:
本题要求给定的有向图里是否又a->b->c->a的三角形环。由于矩阵中任意两点有么有正向边,要么有反向边,所以只要有环,就能构成三角形环。证明如下:假设有n元环,a->b->c……->a,若c->a有边,则存在三角形环a->b->c->a;若无边,则说明不存在c->a的边从而存在a->c的边,于是有n元环a->b->c……->a变成有n-1元环,a->c……->a,最终可以证明存在三角形环。时间复杂度为拓扑排序的O(n*n),在本题可以接受。
#include<iostream> #include<cstring> using namespace std; const int MAXN=2000+10; int inDev[MAXN]; bool visited[MAXN]; bool g[MAXN][MAXN]; char str[MAXN]; int n; void init() { memset(g,0,sizeof(g)); memset(visited,0,sizeof(visited)); memset(inDev,0,sizeof(inDev)); } void input() { scanf("%d",&n); for(int i=0;i<n;i++) { scanf("%s",str); for(int j=0;j<n;j++) { if('1'==str[j]) { g[i][j]=true; ++inDev[j]; } } } } void topSort() { int i,tag=0,k=0; while(k<n) { for(i=0;i<n;i++) if(!visited[i]&&0==inDev[i]) break; if(i>=n) { tag=1; break; } ++k; visited[i]=true; for(int j=0;j<n;j++) if(g[i][j]&&inDev[j]!=0) --inDev[j]; } if(tag) printf("Yes\n"); else printf("No\n"); } int main() { int cas,tag=0; cin>>cas; while(cas--) { init(); input(); printf("Case #%d: ",++tag); topSort(); } system("pause"); return 0; }
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。