首页 > 代码库 > 埃及分解:将2/n分解成为1/x+1/y的格式

埃及分解:将2/n分解成为1/x+1/y的格式

算法
古埃及曾经创造出灿烂的人类文明,他们的分数表示却很令人不解。古埃及喜欢把一个分数分解为类似: 1/a + 1/b 的格式。
这里,a 和 b 必须是不同的两个整数,分子必须为 1
比如,2/15 一共有 4 种不同的分解法(姑且称为埃及分解法):
1/8 + 1/120
1/9 + 1/45
1/10 + 1/30
1/12 + 1/20

那么, 2/45 一共有多少个不同的埃及分解呢(满足加法交换律的算同种分解)?


这道题看似困难实则简单,只用在给定数分母的左右侧各设置一个游标并向两边滑动即可。

感谢小小酥的提示。


import java.util.ArrayList;
import java.util.List;

public class H3 {
	public static void main(String[] args) {
		int deno = 45;//分母
		List<String> res = new ArrayList<>();
		for(int i = deno-1; i>(deno-1)/2; i--) {//左侧的游标
			for(int j= deno+1; 2*i*j<=i*deno+j*deno; j++) {//右侧的游标,循环条件是左右两个数的和(1/i+1/j)大于等于给定数(2/45)
				if(2*i*j==i*deno+j*deno) {
					res.add("1/"+i+"+"+"1/"+j);
				}
			}
		}
		//注:这里游标是不需要回溯的,大家可以想一下为什么
		for(String s : res) {
			System.out.println(s);
		}
	}
}