首页 > 代码库 > O(n)求1~n的逆元
O(n)求1~n的逆元
原地址:http://www.2cto.com/kf/201401/272375.html
前提是MOD是个素数。
新学的一个求逆元的方法:
inv[i] = ( MOD - MOD / i ) * inv[MOD%i] % MOD
证明:
设t = MOD / i , k = MOD % i
则有 t * i + k == 0 % MOD //(t*i+k) = MOD
有 -t * i == k % MOD
两边同时除以ik得到
-t * inv[k] == inv[i] % MOD
即
inv[i] == -MOD / i * inv[MOD%i]
即
inv[i] == ( MOD - MOD / i) * inv[MOD%i]
证毕
能够O(n)时间求出1~n对模MOD的逆
O(n)求1~n的逆元
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。