首页 > 代码库 > 【BZOJ】1927: [Sdoi2010]星际竞速(二分图+费用流)

【BZOJ】1927: [Sdoi2010]星际竞速(二分图+费用流)

http://www.lydsy.com/JudgeOnline/problem.php?id=1927

好神的题!!!!!!!!!!!!!!!!!!!

拆点后变成二分图,其实我们要求的就是类似路径覆盖这样的东西!!

只不过是加了权的。。

建图:

  • 源向i+n连容量1,费用为能力爆发的费用
  • 源向i连容量1,费用为0
  • i+n向汇连容量1,费用0
  • 如果有边x<y,连x到y+n容量为1,费用为时间

然后跑最小费用最大流

为什么这样就行了呢?

首先,最大流一定是一个对n个点的路径覆盖(即覆盖掉所有的附加点i+n)。

证明:因为源s向i+n连了容量1,i+n向汇连了容量1,且汇的上界为n,那么保证了最大流为一定n(且都覆盖了附加点i+n),这样就保证了n个点一定被覆盖。

如果有边x->y, 那么也就是在s向y+n连的边与x向y+n连的边里取费用小的。

因此最小费用就是一个答案。

 

#include <cstdio>#include <cstring>#include <cmath>#include <string>#include <iostream>#include <algorithm>#include <queue>#include <set>#include <map>using namespace std;typedef long long ll;#define rep(i, n) for(int i=0; i<(n); ++i)#define for1(i,a,n) for(int i=(a);i<=(n);++i)#define for2(i,a,n) for(int i=(a);i<(n);++i)#define for3(i,a,n) for(int i=(a);i>=(n);--i)#define for4(i,a,n) for(int i=(a);i>(n);--i)#define CC(i,a) memset(i,a,sizeof(i))#define read(a) a=getint()#define print(a) printf("%d", a)#define dbg(x) cout << (#x) << " = " << (x) << endl#define error(x) (!(x)?puts("error"):0)#define rdm(x, i) for(int i=ihead[x]; i; i=e[i].next)inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<‘0‘||c>‘9‘; c=getchar()) if(c==‘-‘) k=-1; for(; c>=‘0‘&&c<=‘9‘; c=getchar()) r=r*10+c-‘0‘; return k*r; }const int N=2005, oo=~0u>>2;int ihead[N], cnt=1, q[N], n, p[N], d[N], vis[N];struct dat { int next, to, cap, from, w; }e[N*N];void add(int u, int v, int c, int w) {	e[++cnt].next=ihead[u]; ihead[u]=cnt; e[cnt].to=v; e[cnt].from=u; e[cnt].cap=c; e[cnt].w=w;	e[++cnt].next=ihead[v]; ihead[v]=cnt; e[cnt].to=u; e[cnt].from=v; e[cnt].cap=0; e[cnt].w=-w;}bool spfa(int s, int t) {	for1(i, 0, t) vis[i]=0, d[i]=oo;	d[s]=0; int front=0, tail=0;	q[tail++]=s;	while(front!=tail) {		int u=q[front++], v; if(front==N) front=0; vis[u]=0;		rdm(u, i) if(e[i].cap) {			v=e[i].to;			if(d[v]>d[u]+e[i].w) {				d[v]=d[u]+e[i].w;				p[v]=i;				if(!vis[v]) {					vis[v]=1;					if(d[v]<d[q[front]]) {						--front; if(front<0) front+=N;						q[front]=v;					}					else {						q[tail++]=v; if(tail==N) tail=0;					}				}			}		}	}	return d[t]!=oo;}int mcf(int s, int t) {	int ret=0, f, u;	while(spfa(s, t)) {		f=oo;		for(u=t; u!=s; u=e[p[u]].from) f=min(f, e[p[u]].cap);		for(u=t; u!=s; u=e[p[u]].from) e[p[u]].cap-=f, e[p[u]^1].cap+=f;		ret+=f*d[t];	}	return ret;}int main() {	read(n);	int m=getint();	int s=0, t=n+n+1;	for1(i, 1, n) add(s, i+n, 1, getint());	for1(i, 1, n) add(s, i, 1, 0);	for1(i, 1, n) add(i+n, t, 1, 0);	for1(i, 1, m) {		int x=getint(), y=getint();		if(x>y) swap(x, y);		add(x, y+n, 1, getint());	}	printf("%d\n", mcf(s, t));	return 0;}

  

 


 

 

Description

10 年一度的银河系赛车大赛又要开始了。作为全银河最盛大的活动之一, 夺得这个项目的冠军无疑是很多人的梦想,来自杰森座 α星的悠悠也是其中之一。 赛车大赛的赛场由 N 颗行星和M条双向星际航路构成,其中每颗行星都有 一个不同的引力值。大赛要求车手们从一颗与这 N 颗行星之间没有任何航路的 天体出发,访问这 N 颗行星每颗恰好一次,首先完成这一目标的人获得胜利。 由于赛制非常开放,很多人驾驶着千奇百怪的自制赛车来参赛。这次悠悠驾 驶的赛车名为超能电驴,这是一部凝聚了全银河最尖端科技结晶的梦幻赛车。作 为最高科技的产物,超能电驴有两种移动模式:高速航行模式和能力爆发模式。 在高速航行模式下,超能电驴会展开反物质引擎,以数倍于光速的速度沿星际航 路高速航行。在能力爆发模式下,超能电驴脱离时空的束缚,使用超能力进行空 间跳跃——在经过一段时间的定位之后,它能瞬间移动到任意一个行星。 天不遂人愿,在比赛的前一天,超能电驴在一场离子风暴中不幸受损,机能 出现了一些障碍:在使用高速航行模式的时候,只能由每个星球飞往引力比它大 的星球,否则赛车就会发生爆炸。 尽管心爱的赛车出了问题,但是悠悠仍然坚信自己可以取得胜利。他找到了 全银河最聪明的贤者——你,请你为他安排一条比赛的方案,使得他能够用最少 的时间完成比赛。

Input

第一行是两个正整数 N, M。 第二行 N 个数 A1~AN, 其中Ai表示使用能力爆发模式到达行星 i 所需的定位 时间。 接下来 M行,每行 3个正整数ui, vi, wi,表示在编号为 ui和vi的行星之间存 在一条需要航行wi时间的星际航路。 输入数据已经按引力值排序,也就是编号小的行星引力值一定小,且不会有 两颗行星引力值相同。

Output

仅包含一个正整数,表示完成比赛所需的最少时间。

Sample Input

3 3
1 100 100
2 1 10
1 3 1
2 3 1

Sample Output

12

HINT

说明:先使用能力爆发模式到行星 1,花费时间 1。 
然后切换到高速航行模式,航行到行星 2,花费时间10。 
之后继续航行到行星 3完成比赛,花费时间 1。 
虽然看起来从行星 1到行星3再到行星 2更优,但我们却不能那样做,因为
那会导致超能电驴爆炸。 

对于 30%的数据 N≤20,M≤50; 
对于 70%的数据 N≤200,M≤4000; 
对于100%的数据N≤800, M≤15000。输入数据中的任何数都不会超过106
。 
输入数据保证任意两颗行星之间至多存在一条航道,且不会存在某颗行星到
自己的航道。

Source

第一轮Day2

【BZOJ】1927: [Sdoi2010]星际竞速(二分图+费用流)