首页 > 代码库 > 【BZOJ】1927: [Sdoi2010]星际竞速(二分图+费用流)
【BZOJ】1927: [Sdoi2010]星际竞速(二分图+费用流)
http://www.lydsy.com/JudgeOnline/problem.php?id=1927
好神的题!!!!!!!!!!!!!!!!!!!
拆点后变成二分图,其实我们要求的就是类似路径覆盖这样的东西!!
只不过是加了权的。。
建图:
- 源向i+n连容量1,费用为能力爆发的费用
- 源向i连容量1,费用为0
- i+n向汇连容量1,费用0
- 如果有边x<y,连x到y+n容量为1,费用为时间
然后跑最小费用最大流
为什么这样就行了呢?
首先,最大流一定是一个对n个点的路径覆盖(即覆盖掉所有的附加点i+n)。
证明:因为源s向i+n连了容量1,i+n向汇连了容量1,且汇的上界为n,那么保证了最大流为一定n(且都覆盖了附加点i+n),这样就保证了n个点一定被覆盖。
如果有边x->y, 那么也就是在s向y+n连的边与x向y+n连的边里取费用小的。
因此最小费用就是一个答案。
#include <cstdio>#include <cstring>#include <cmath>#include <string>#include <iostream>#include <algorithm>#include <queue>#include <set>#include <map>using namespace std;typedef long long ll;#define rep(i, n) for(int i=0; i<(n); ++i)#define for1(i,a,n) for(int i=(a);i<=(n);++i)#define for2(i,a,n) for(int i=(a);i<(n);++i)#define for3(i,a,n) for(int i=(a);i>=(n);--i)#define for4(i,a,n) for(int i=(a);i>(n);--i)#define CC(i,a) memset(i,a,sizeof(i))#define read(a) a=getint()#define print(a) printf("%d", a)#define dbg(x) cout << (#x) << " = " << (x) << endl#define error(x) (!(x)?puts("error"):0)#define rdm(x, i) for(int i=ihead[x]; i; i=e[i].next)inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<‘0‘||c>‘9‘; c=getchar()) if(c==‘-‘) k=-1; for(; c>=‘0‘&&c<=‘9‘; c=getchar()) r=r*10+c-‘0‘; return k*r; }const int N=2005, oo=~0u>>2;int ihead[N], cnt=1, q[N], n, p[N], d[N], vis[N];struct dat { int next, to, cap, from, w; }e[N*N];void add(int u, int v, int c, int w) { e[++cnt].next=ihead[u]; ihead[u]=cnt; e[cnt].to=v; e[cnt].from=u; e[cnt].cap=c; e[cnt].w=w; e[++cnt].next=ihead[v]; ihead[v]=cnt; e[cnt].to=u; e[cnt].from=v; e[cnt].cap=0; e[cnt].w=-w;}bool spfa(int s, int t) { for1(i, 0, t) vis[i]=0, d[i]=oo; d[s]=0; int front=0, tail=0; q[tail++]=s; while(front!=tail) { int u=q[front++], v; if(front==N) front=0; vis[u]=0; rdm(u, i) if(e[i].cap) { v=e[i].to; if(d[v]>d[u]+e[i].w) { d[v]=d[u]+e[i].w; p[v]=i; if(!vis[v]) { vis[v]=1; if(d[v]<d[q[front]]) { --front; if(front<0) front+=N; q[front]=v; } else { q[tail++]=v; if(tail==N) tail=0; } } } } } return d[t]!=oo;}int mcf(int s, int t) { int ret=0, f, u; while(spfa(s, t)) { f=oo; for(u=t; u!=s; u=e[p[u]].from) f=min(f, e[p[u]].cap); for(u=t; u!=s; u=e[p[u]].from) e[p[u]].cap-=f, e[p[u]^1].cap+=f; ret+=f*d[t]; } return ret;}int main() { read(n); int m=getint(); int s=0, t=n+n+1; for1(i, 1, n) add(s, i+n, 1, getint()); for1(i, 1, n) add(s, i, 1, 0); for1(i, 1, n) add(i+n, t, 1, 0); for1(i, 1, m) { int x=getint(), y=getint(); if(x>y) swap(x, y); add(x, y+n, 1, getint()); } printf("%d\n", mcf(s, t)); return 0;}
Description
10 年一度的银河系赛车大赛又要开始了。作为全银河最盛大的活动之一, 夺得这个项目的冠军无疑是很多人的梦想,来自杰森座 α星的悠悠也是其中之一。 赛车大赛的赛场由 N 颗行星和M条双向星际航路构成,其中每颗行星都有 一个不同的引力值。大赛要求车手们从一颗与这 N 颗行星之间没有任何航路的 天体出发,访问这 N 颗行星每颗恰好一次,首先完成这一目标的人获得胜利。 由于赛制非常开放,很多人驾驶着千奇百怪的自制赛车来参赛。这次悠悠驾 驶的赛车名为超能电驴,这是一部凝聚了全银河最尖端科技结晶的梦幻赛车。作 为最高科技的产物,超能电驴有两种移动模式:高速航行模式和能力爆发模式。 在高速航行模式下,超能电驴会展开反物质引擎,以数倍于光速的速度沿星际航 路高速航行。在能力爆发模式下,超能电驴脱离时空的束缚,使用超能力进行空 间跳跃——在经过一段时间的定位之后,它能瞬间移动到任意一个行星。 天不遂人愿,在比赛的前一天,超能电驴在一场离子风暴中不幸受损,机能 出现了一些障碍:在使用高速航行模式的时候,只能由每个星球飞往引力比它大 的星球,否则赛车就会发生爆炸。 尽管心爱的赛车出了问题,但是悠悠仍然坚信自己可以取得胜利。他找到了 全银河最聪明的贤者——你,请你为他安排一条比赛的方案,使得他能够用最少 的时间完成比赛。
Input
第一行是两个正整数 N, M。 第二行 N 个数 A1~AN, 其中Ai表示使用能力爆发模式到达行星 i 所需的定位 时间。 接下来 M行,每行 3个正整数ui, vi, wi,表示在编号为 ui和vi的行星之间存 在一条需要航行wi时间的星际航路。 输入数据已经按引力值排序,也就是编号小的行星引力值一定小,且不会有 两颗行星引力值相同。
Output
仅包含一个正整数,表示完成比赛所需的最少时间。
Sample Input
3 3
1 100 100
2 1 10
1 3 1
2 3 1
1 100 100
2 1 10
1 3 1
2 3 1
Sample Output
12
HINT
说明:先使用能力爆发模式到行星 1,花费时间 1。
然后切换到高速航行模式,航行到行星 2,花费时间10。
之后继续航行到行星 3完成比赛,花费时间 1。
虽然看起来从行星 1到行星3再到行星 2更优,但我们却不能那样做,因为
那会导致超能电驴爆炸。
对于 30%的数据 N≤20,M≤50;
对于 70%的数据 N≤200,M≤4000;
对于100%的数据N≤800, M≤15000。输入数据中的任何数都不会超过106
。
输入数据保证任意两颗行星之间至多存在一条航道,且不会存在某颗行星到
自己的航道。
Source
第一轮Day2
【BZOJ】1927: [Sdoi2010]星际竞速(二分图+费用流)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。