首页 > 代码库 > UVA10616 - Divisible Group Sums(dp)
UVA10616 - Divisible Group Sums(dp)
UVA10616 - Divisible Group Sums(dp)
题目链接
题目大意:N个数,选择m个数出来,问相加的和能够整除MOD有多少种选择方式。
解题思路:从1到N数选择过去,每个数有选和不选两种可能,并且(num + d) % MOD = num % MOD + d % MOD, 所以可以这么做,最后判断一下余数等于0么。坑点是这题N个数会有负数,负数的取模 (num % MOD + MOD) % MOD.这一题因为没有控制选择的数目m的增加次数,导致re了好久,简直无语死了。。。
代码:
#include <cstdio>
#include <cstring>
typedef long long ll;
const int maxn = 205;
const int maxm = 15;
const int maxd = 25;
int N, Q, MOD, M;
int num[maxn], tmp[maxn];
ll f[maxn][maxm][maxd];
void init () {
for (int i = 0; i < N; i++)
scanf ("%d", &num[i]);
}
ll dp (int n, int m, int d) {
ll& ans = f[n][m][d];
if (ans != -1)
return ans;
if (n == N) {
if (m == M && d == 0)
return ans = 1;
return ans = 0;
}
ans = 0;
if (m < M)
ans += dp(n + 1, m + 1, (d + tmp[n]) % MOD);
ans += dp(n + 1, m, d);
return ans;
}
int main () {
int cas = 0;
while (scanf ("%d%d", &N, &Q) && (N || Q)) {
init();
printf ("SET %d:\n", ++cas);
for (int i = 0; i < Q; i++) {
scanf ("%d%d", &MOD, &M);
memset (f, -1, sizeof (f));
for (int j = 0; j < N; j++)
tmp[j] = (num[j] % MOD + MOD) % MOD;
printf ("QUERY %d: %lld\n", i + 1, dp(0, 0, 0));
}
}
return 0;
}
UVA10616 - Divisible Group Sums(dp)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。