首页 > 代码库 > Highly divisible triangular number
Highly divisible triangular number
我的那个暴力求解,太耗时间了。
用了网上产的什么因式分解,质因数之类的。确实快!还是数学基础不行,只能知道大约。
The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
Let us list the factors of the first seven triangle numbers:
1: 1
3: 1,3
6: 1,2,3,6
10: 1,2,5,10
15: 1,3,5,15
21: 1,3,7,21
28: 1,2,4,7,14,28
We can see that 28 is the first triangle number to have over five divisors.
What is the value of the first triangle number to have over five hundred divisors?
from math import sqrt import time def natSum(n): x = 1 count = 0 sum = 0 while count <= n: sum += x count = 0 for i in range(1,int(sqrt(sum))+1): if sum % i == 0: count += 2 if sqrt(sum)==int(sqrt(sum)): count -= 1 print x,sum,count,n x += 1 natSum(500) ‘‘‘ start=time.time() now=2 num=1 t = 0 while t <= 500 : num=num+now now+=1 t=0 for x in range(1,int(sqrt(num))+1): if num%x==0: t+=2 if sqrt(num)==int(sqrt(num)): t=t-1 print num print num print time.time()-start ‘‘‘
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。