首页 > 代码库 > 混沌分形之填充集

混沌分形之填充集

      通过分形来生成图像,有一个特点是:不想生成什么样的图像就写出相应的算法,而是生成出来的图像像什么,那算法就是什么。总之,当你在写这个算法时或设置相关参数时,你几乎无法猜测出你要生成的图像是什么样子。而生成图像的时间又比较久,无法实时地调整参数。所以我这使用了填充集的方式,先计算少量的顶点,以显示出图像的大致轮廓。确定好参数后再进行图像生成。所谓填充集,就是随机生成顶点位置,当满足要求时顶点保留,否则剔除。这里将填充集的方式来生成Julia集,曼德勃罗集和牛顿迭代集.

(1)Julia集

// 填充Julia集// http://www.douban.com/note/230496472/class JuliaSet2 : public FractalEquation{public:    JuliaSet2()    {        m_StartX = 0.0f;        m_StartY = 0.0f;        m_StartZ = 0.0f;        m_ParamA = 0.11f;        m_ParamB = 0.615f;        m_nIterateCount = 80;    }    void IterateValue(float x, float y, float z, float& outX, float& outY, float& outZ) const    {        x = outX = yf_rand_real(-1.0f, 1.0f);        y = outY = yf_rand_real(-1.0f, 1.0f);        float lengthSqr;        float temp;        int count = 0;        do        {            temp = x * x - y * y + m_ParamA;            y = 2 * x * y + m_ParamB;            x = temp;            lengthSqr = x * x + y * y;            count++;        }        while ((lengthSqr < 4.0f) && (count < m_nIterateCount));        if (lengthSqr > 4.0f)        {            outX = 0.0f;            outY = 0.0f;        }        outZ = z;    }    bool IsValidParamA() const {return true;}    bool IsValidParamB() const {return true;}private:    int m_nIterateCount;};

(2)曼德勃罗集

// 曼德勃罗集// http://www.cnblogs.com/Ninputer/archive/2009/11/24/1609364.htmlclass MandelbrotSet : public FractalEquation{public:    MandelbrotSet()    {        m_StartX = 0.0f;        m_StartY = 0.0f;        m_StartZ = 0.0f;        m_ParamA = -1.5f;        m_ParamB = 1.0f;        m_ParamC = -1.0f;        m_ParamD = 1.0f;        m_nIterateCount = 100;    }    void IterateValue(float x, float y, float z, float& outX, float& outY, float& outZ) const    {        float cr = m_ParamA + (m_ParamB - m_ParamA)*((float)rand()/RAND_MAX);        float ci = m_ParamC + (m_ParamD - m_ParamC)*((float)rand()/RAND_MAX);        outX = 0.0f;        outY = 0.0f;        float lengthSqr;        float temp;        int count = 0;        do        {            temp = outX * outX - outY * outY + cr;            outY = 2 * outX * outY + ci;            outX = temp;            lengthSqr = outX * outX + outY * outY;            count++;        }        while ((lengthSqr < 4.0f) && (count < m_nIterateCount));        if (lengthSqr < 4.0f)        {            outX = cr;            outY = ci;        }        else        {            outX = 0.0f;            outY = 0.0f;        }        outZ = z;    }    bool IsValidParamA() const {return true;}    bool IsValidParamB() const {return true;}    bool IsValidParamC() const {return true;}    bool IsValidParamD() const {return true;}private:    int m_nIterateCount;};

(3)牛顿迭代集

// 牛顿迭代// http://www.douban.com/note/230496472/class NewtonIterate : public FractalEquation{public:    NewtonIterate()    {        m_StartX = 0.0f;        m_StartY = 0.0f;        m_StartZ = 0.0f;        m_ParamA = 1.0f;        m_nIterateCount = 64;    }    void IterateValue(float x, float y, float z, float& outX, float& outY, float& outZ) const    {        x = outX = yf_rand_real(-m_ParamA, m_ParamA);        y = outY = yf_rand_real(-m_ParamA, m_ParamA);        float xx, yy, d, tmp;        for (int i = 0; i < m_nIterateCount; i++)        {            xx = x*x;            yy = y*y;            d = 3.0f*((xx - yy)*(xx - yy) + 4.0f*xx*yy);            if (fabsf(d) < EPSILON)            {                d = d > 0.0f ? EPSILON : -EPSILON;            }            tmp = x;            x = 0.666667f*x + (xx - yy)/d;            y = 0.666667f*y - 2.0f*tmp*y/d;        }        if (x < 0.0f)        {            outX = 0.0f;            outY = 0.0f;        }        outZ = z;    }    bool IsValidParamA() const {return true;}private:    int m_nIterateCount;};

 

(4)

关于基类FractalEquation的定义见:混沌与分形

再发几幅图像:

 

——

混沌分形之填充集