首页 > 代码库 > bzoj3931【CQOI2015】网络吞吐量

bzoj3931【CQOI2015】网络吞吐量

3931: [CQOI2015]网络吞吐量

Time Limit: 10 Sec  Memory Limit: 512 MB
Submit: 853  Solved: 381
[Submit][

id=3931" style="color:blue; text-decoration:none">Status][Discuss]

Description

 路由是指通过计算机网络把信息从源地址传输到目的地址的活动。也是计算机网络设计中的重点和难点。网络中实现路由转发的硬件设备称为路由器。为了使数据包最快的到达目的地,路由器须要选择最优的路径转发数据包。比如在经常使用的路由算法OSPF(开放式最短路径优先)中。路由器会使用经典的Dijkstra算法计算最短路径,然后尽量沿最短路径转发数据包。如今,若已知一个计算机网络中各路由器间的连接情况。以及各个路由器的最大吞吐量(即每秒能转发的数据包数量)。如果全部数据包一定沿最短路径转发,试计算从路由器1到路由器n的网络的最大吞吐量。

计算中忽略转发及传输的时间开销,不考虑链路的带宽限制,即觉得数据包能够瞬间通过网络。

路由器1到路由器n作为起点和终点,自身的吞吐量不用考虑,网络上也不存在将1和n直接相连的链路。

Input

输入文件第一行包括两个空格分开的正整数n和m,分别表示路由器数量和链路的数量。网络中的路由器使用1到n编号。

接下来m行,每行包括三个空格分开的正整数a、b和d。表示从路由器a到路由器b存在一条距离为d的双向链路。 接下来n行,每行包括一个正整数c,分别给出每个路由器的吞吐量。

Output

输出一个整数。为题目所求吞吐量。

Sample Input

7 10
1 2 2
1 5 2
2 4 1
2 3 3
3 7 1
4 5 4
4 3 1
4 6 1
5 6 2
6 7 1
1
100
20
50
20
60
1

Sample Output

70

HINT

 对于100%的数据,n≤500,m≤100000,d,c≤10^9

Source




最短路+最大流裸题




#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#include<queue>
#define F(i,j,n) for(int i=j;i<=n;i++)
#define D(i,j,n) for(int i=j;i>=n;i--)
#define ll long long
#define pa pair<ll,int>
#define maxn 1100
#define maxm 400100
#define inf 1000000000000000ll
using namespace std;
int n,m,s,t,cnt=0;
int head[maxn],cur[maxn],x[100100],y[100100];
ll dis[maxn],c[maxn],z[100100];
ll ans=0;
bool inq[maxn],vst[maxn];
struct edge_type
{
	int to,next;
	ll v;
}e[maxm];
inline int read()
{
	int x=0,f=1;char ch=getchar();
	while (ch<'0'||ch>'9'){if (ch=='-') f=-1;ch=getchar();}
	while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
	return x*f;
}
inline void add_edge(int x,int y,ll z1,ll z2)
{
	e[++cnt]=(edge_type){y,head[x],z1};head[x]=cnt;
	e[++cnt]=(edge_type){x,head[y],z2};head[y]=cnt;
}
inline void dijkstra()
{
	priority_queue<pa,vector<pa>,greater<pa> > q;
	memset(dis,-1,sizeof(dis));
	dis[1]=0;
	q.push(make_pair(0,1));
	while (!q.empty())
	{
		int x=q.top().second;q.pop();
		while (!q.empty()&&vst[x]){x=q.top().second;q.pop();}
		if (vst[x]) break;
		vst[x]=true;
		for(int i=head[x];i;i=e[i].next)
		{
			int y=e[i].to;
			if (dis[y]==-1||dis[y]>dis[x]+e[i].v)
			{
				dis[y]=dis[x]+e[i].v;
				q.push(make_pair(dis[y],y));
			}
		}
	}
}
inline ll dfs(int x,ll f)
{
	ll tmp,sum=0;
	if (x==t) return f;
	for(int &i=cur[x];i;i=e[i].next)
	{
		int y=e[i].to;
		if (e[i].v&&dis[y]==dis[x]+1)
		{
			tmp=dfs(y,min(f-sum,e[i].v));
			e[i].v-=tmp;e[i^1].v+=tmp;sum+=tmp;
			if (sum==f) return sum;
		}
	}
	if (!sum) dis[x]=-1;
	return sum;
}
inline bool bfs()
{
	queue<int> q;
	memset(dis,-1,sizeof(dis));
	dis[s]=0;q.push(s);
	while (!q.empty())
	{
		int tmp=q.front();q.pop();
		if (tmp==t) return true;
		for(int i=head[tmp];i;i=e[i].next) if (e[i].v&&dis[e[i].to]==-1)
		{
			dis[e[i].to]=dis[tmp]+1;
			q.push(e[i].to);
		}
	}
	return false;
}
inline void dinic()
{
	while (bfs())
	{
		F(i,1,t) cur[i]=head[i];
		ans+=dfs(s,inf);
	}
}
int main()
{
	n=read();m=read();
	F(i,1,m)
	{
		x[i]=read();y[i]=read();z[i]=read();
		add_edge(x[i],y[i],z[i],z[i]);
	}
	F(i,1,n) c[i]=read();
	c[1]=c[n]=inf;
	dijkstra();
	memset(head,0,sizeof(head));
	cnt=1;s=1;t=2*n;
	F(i,1,n) add_edge(i,i+n,c[i],0);
	F(i,1,m)
	{
		if (dis[y[i]]==dis[x[i]]+z[i]) add_edge(x[i]+n,y[i],inf,0);
		if (dis[x[i]]==dis[y[i]]+z[i]) add_edge(y[i]+n,x[i],inf,0);
	}
	dinic();
	printf("%lld\n",ans);
}


bzoj3931【CQOI2015】网络吞吐量