首页 > 代码库 > Math Magic(完全背包)

Math Magic(完全背包)

Math Magic

Time Limit:3000MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu
Submit Status

Description

Yesterday, my teacher taught us about math: +, -, *, /, GCD, LCM... As you know, LCM (Least common multiple) of two positive numbers can be solved easily because of a * b = GCD (a, b) * LCM (a, b).

In class, I raised a new idea: "how to calculate the LCM of K numbers". It‘s also an easy problem indeed, which only cost me 1 minute to solve it. I raised my hand and told teacher about my outstanding algorithm. Teacher just smiled and smiled...

After class, my teacher gave me a new problem and he wanted me solve it in 1 minute, too. If we know three parameters N, M, K, and two equations:

1. SUM (A1, A2, ..., Ai, Ai+1,..., AK) = N 
2. LCM (A1, A2, ..., Ai, Ai+1,..., AK) = M

Can you calculate how many kinds of solutions are there for Ai (Ai are all positive numbers). I began to roll cold sweat but teacher just smiled and smiled.

Can you solve this problem in 1 minute?

Input

There are multiple test cases.

Each test case contains three integers N, M, K. (1 ≤ N, M ≤ 1,000, 1 ≤ K ≤ 100)

Output

For each test case, output an integer indicating the number of solution modulo 1,000,000,007(1e9 + 7).

You can get more details in the sample and hint below.

Sample Input

4 2 23 2 2

Sample Output

12

Hint

The first test case: the only solution is (2, 2).

The second test case: the solution are (1, 2) and (2, 1).

 

 

题意:

给出n,m,k,问k个数的和为n,最小公倍数为m的情况有几种

思路:

因为最小公倍数为m,可以知道这些数必然是m的因子,那么我们只需要选出这所有的因子,拿这些因子来背包就可以了

dp[now][i][j]表示当前状态下,和为i,最小公倍数为j的解的个数。递推K次就出答案了。

注意需要优化!!!

详见代码

#include<cstdio>#include<iostream>#include<cstring>using namespace std;#define mod 1000000007int num[1000];int dp[2][1010][1010];int LCM[1010][1010];int gcd(int a,int b)//最大公约数{    if(b==0) return a;    return gcd(b,a%b);}int lcm(int a,int b)//最小公倍数{    return (a*b/gcd(a,b));}int main(){    int n,m,k;    int i,j;    for(i=1;i<=1000;i++)//预处理,前1000的最小公倍数    {        for(j=1;j<=1000;j++)        {            LCM[i][j]=lcm(i,j);        }    }    while(scanf("%d%d%d",&n,&m,&k)!=EOF)    {        int cnt=0;        //因为最小公倍数m已知,所以Ai必定是他的因子        for(i=1;i<=m;i++)        {            if(m%i==0)                num[cnt++]=i;        }        //dp[now][i][j]now表示当前状态下,和为i,最小公倍数为j的解的个数。递推K次就出答案了。        int now=0;        //memset(dp[nom],0,sizeof(dp[nom]));        for(i=0;i<=n;i++)        {            for(j=0;j<cnt;j++)            {                //初始化,和为i,最小公倍数是num[j]的                dp[now][i][num[j]]=0;            }        }        dp[0][0][1]=1;        for(int t=1;t<=k;t++)        {            now^=1;            for(i=0;i<=n;i++)            {                for(j=0;j<cnt;j++)                {                    dp[now][i][num[j]]=0;                }            }            for(i=t-1;i<=n;i++)            {                for(j=0;j<cnt;j++)                {                    if(dp[now^1][i][num[j]]==0)continue;                    for(int p=0;p<cnt;p++)                    {                        int x=i+num[p];                        int y=LCM[num[j]][num[p]];                        if(x>n||m%y!=0) continue;                        dp[now][x][y]+=dp[now^1][i][num[j]];                        dp[now][x][y]%=mod;                    }                }            }        }        printf("%d\n",dp[now][n][m]);    }    return 0;}

 

 

Math Magic(完全背包)