首页 > 代码库 > 简单的dp hdu 数塔(水题)

简单的dp hdu 数塔(水题)

数塔

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 21314    Accepted Submission(s): 12808


Problem Description
在讲述DP算法的时候,一个经典的例子就是数塔问题,它是这样描述的:

有如下所示的数塔,要求从顶层走到底层,若每一步只能走到相邻的结点,则经过的结点的数字之和最大是多少?

已经告诉你了,这是个DP的题目,你能AC吗?
 

Input
输入数据首先包括一个整数C,表示测试实例的个数,每个测试实例的第一行是一个整数N(1 <= N <= 100),表示数塔的高度,接下来用N行数字表示数塔,其中第i行有个i个整数,且所有的整数均在区间[0,99]内。
 

Output
对于每个测试实例,输出可能得到的最大和,每个实例的输出占一行。
 

Sample Input
1 5 7 3 8 8 1 0 2 7 4 4 4 5 2 6 5
 

Sample Output
30
 

Source
2006/1/15 ACM程序设计期末考试

总的来说是dp的入门级题目吧,因为要表示这个状态方程比较简单,从下往上:dp[i][j]+=dp[i+1][j+1],dp[i+1][j]

从上往上呢:dp[i][j]+=max(dp[i-1][j-1],dp[i-1][j];但是从上往下你还要判断两边界的值,当它处于左边界的时候

有dp[i][0]+=dp[i-1][0];右边界则是dp[i][i]+=dp[i-1][j-1];

下面是代码:

/*
从上到下
*/
#include<stdio.h>
#include<iostream>
#define max(a,b) a>b?a:b
using namespace std;
int dp[360][360];
int main()
{
  int t,i,j,n;
  int maxn;
  cin>>t;
  while(t--)
  {
    cin>>n;
    for(i=0;i<n;i++)
        for(j=0;j<=i;j++)
            cin>>dp[i][j];
        for(i=1;i<n;i++)
        {
          dp[i][0]+=dp[i-1][0];
          dp[i][i]+=dp[i-1][i-1];
        }
        for(i=2;i<n;i++)
        {
          for(j=1;j<i;j++)
              dp[i][j]+=max(dp[i-1][j-1],dp[i-1][j]);
        }
        for(maxn=-1,j=0;j<n;j++)
            maxn=max(maxn,dp[n-1][j]);
        cout<<maxn<<endl;
  }
  return 0;
}
/*
从下到上
*/ #include<iostream>
#include<cstdio>
int dp[1001][1001];
#define max(a,b) a>b?a:b
using namespace std;
int main(int i,int j)
{
    int t;
    int n;
    cin>>t;
    while(t--)
    {
      cin>>n;
      for(i=0;i<n;i++)
          for(j=0;j<=i;j++)
              cin>>dp[i][j];
          for(i=n-1;i>=0;i--)
              for(j=0;j<=i;j++)
                  dp[i][j]+=max(dp[i+1][j+1],dp[i+1][j]);
              cout<<dp[0][0]<<endl;
    }
   return 0;
}
相比而言这个会更简单,因为这样它就就归到一个定点,不用判断它是否为最大值了,还有一种记忆化搜索,是在动态规划基础上进行优化的