首页 > 代码库 > MMORGP大型游戏设计与开发(客户端架构 part3 of vegine)

MMORGP大型游戏设计与开发(客户端架构 part3 of vegine)

无论在何处在什么地方,我们都或多或少的接触到数学知识。特别是在客户端中,从打开界面的那一刻起就有太多与数学扯上的关联,如打开窗口的大小,窗口的位置,窗口里面的元件对象,以及UI的坐标等等。而在进入游戏之后,不仅有这些坐标,还有了世界的坐标,以及场景坐标,还有粒子对象的各种属性值。但为什么要扩展ogre的数学库呢?就让我们看看有哪些类型的吧。

CODE

  文件math/base.h

/** * PAP Engine ( -- ) * $Id math.h * @link -- for the canonical source repository * @copyright Copyright (c) 2013-2014 viticm( viticm@126.com ) * @license * @user viticm<viticm@126.com/viticm.ti@gmail.com> * @date 2014-3-12 11:15:08 * @uses the base config macros and defines, also with system include */#ifndef VENGINE_MATH_BASE_H_#define VENGINE_MATH_BASE_H_#include "vengine/config.h"namespace vengine_math {namespace base {struct VENGINE_API twofloat_vector_t { public:   inline twofloat_vector_t& operator = (const twofloat_vector_t& vector) {     x = vector.x;     y = vector.y;     return *this;   }   inline bool operator == (const twofloat_vector_t& vector) const {     return (x == vector.x && y == vector.y);   }   inline bool operator != (const twofloat_vector_t& vector) const {     return ( x != vector.x || y != vector.y );   }   inline twofloat_vector_t operator +      (const twofloat_vector_t& vector) const {     twofloat_vector_t sum;     sum.x = x + vector.x;     sum.y = y + vector.y;     return sum;   }   inline twofloat_vector_t operator -      (const twofloat_vector_t& vector) const {     twofloat_vector_t diff;     diff.x = x - vector.x;     diff.y = y - vector.y;     return diff;   }   inline twofloat_vector_t operator * (float scalar ) const {     twofloat_vector_t prod;     prod.x = scalar * x;     prod.y = scalar * y;     return prod;   }   inline friend twofloat_vector_t operator *      (float scalar, const twofloat_vector_t& vector) {     twofloat_vector_t prod;     prod.x = scalar * vector.x;     prod.y = scalar * vector.y;     return prod;   }   inline float length() const;   float normalise(float aimlength = 1.0f); public:   twofloat_vector_t() : x(0.0f), y(0.0f) {}   twofloat_vector_t(float _x, float _y) : x(_x), y(_y) {} public:   float x;    float y;};//tow int32_t vector structstruct VENGINE_API twoint_vector_t { public:   twoint_vector_t() : x(0), y(0) {}   twoint_vector_t(int32_t _x, int32_t _y) : x(_x), y(_y) {} public:   int32_t x;    int32_t y;};struct VENGINE_API threefloat_vector_t { public:   inline threefloat_vector_t& operator =      (const threefloat_vector_t& vector) {     x = vector.x;     y = vector.y;     z = vector.z;                 return *this;   }   inline bool operator == ( const threefloat_vector_t& vector) const {     return (x == vector.x && y == vector.y && z == vector.z);   }   inline bool operator != ( const threefloat_vector_t& vector ) const {     return (x != vector.x || y != vector.y || z != vector.z);   }   inline threefloat_vector_t operator +      (const threefloat_vector_t& vector) const {     threefloat_vector_t sum;     sum.x = x + vector.x;     sum.y = y + vector.y;     sum.z = z + vector.z;     return sum;   }   inline threefloat_vector_t operator -      (const threefloat_vector_t& vector) const {     threefloat_vector_t diff;     diff.x = x - vector.x;     diff.y = y - vector.y;     diff.z = z - vector.z;     return diff;   }   inline threefloat_vector_t operator * (const float& mult) const {     threefloat_vector_t vector;     vector.x = x * mult;     vector.y = y * mult;     vector.z = z * mult;     return vector;   }   inline float length() const;   float normalise(float aimlength = 1.0f); public:   threefloat_vector_t() : x(0.0f), y(0.0f), z(0.0f) {}   threefloat_vector_t(float _x, float _y, float _z) : x(_x), y(_y), z(_z) {} public:   float x;    float y;    float z;};struct VENGINE_API threeint_vector_t { public:   threeint_vector_t() : x(0), y(0), z(0) {}   threeint_vector_t(int32_t _x, int32_t _y, int32_t _z) :      x(_x), y(_y), z(_z) {} public:   int32_t x;    int32_t y;    int32_t z;};struct VENGINE_API floatray { public:   threefloat_vector_t origin;   threefloat_vector_t direction;};}; //namespace base}; //namespace vengine_math#endif //VENGINE_MATH_BASE_H_

 

总结

  从上面的代码中不难看出,扩展的数学库将二维坐标、三维坐标,以整型与浮点的形式进行了结构体的封装,而这些正是在3D游戏中经常用到的各种坐标数据类型。floatray为最后一个封装,是屏幕射线的结构,一个是起点坐标,一个是方向的坐标,两个坐标组成了一条线。学习过立体几何的都应该知道,在点与点之间这条直线自然就确定了一个方向。

  这两节都讲的比较简单,接下来会讲一下客户端的性能接口模块,其实性能接口就是在引擎接口中实现了的,我们下节再说。