首页 > 代码库 > 《机器学习基石》---Linear Models for Classification
《机器学习基石》---Linear Models for Classification
1 用回归来做分类
到目前为止,我们学习了线性分类,线性回归,逻辑回归这三种模型。以下是它们的pointwise损失函数对比(为了更容易对比,都把它们写作s和y的函数,s是wTx,表示线性打分的分数):
把这几个损失函数画在一张图上:
如果把逻辑回归的损失函数ce做一个适当的放缩,则可以得到下图:
可以看出,平方误差和放缩后的交叉熵误差是0/1误差的上限,这里以放缩后的ce举例,由于对于每个点的error均成立不等式,则不论是对于Ein还是Eout仍然有不等式成立,因为它们是数据集上每个点error的期望:
应用到VCbound,就有:
可以看出,只要把训练集上的交叉熵误差做到低,则就能保证真实的0/1错误也比较低。
因此线性回归和逻辑回归都可以用来做分类:
正如之前在《噪声与错误》一节中所说,我们这里用平方错误或交叉熵错误来代替01错误,作为errhat。
通常,我们会使用线性回归的结果作为逻辑回归,PLA,pocket算法的初始值。
《机器学习基石》---Linear Models for Classification
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。