首页 > 代码库 > 挑战程序设计竞赛选录:2

挑战程序设计竞赛选录:2

2.1 截木板    【贪心法(Huffman 编码)】

截断一块木板时,开销为此木板的长度。现在将一根很长的木板截成 N 块,第 i 块长度为 Li 。求最小开销。

Limits: (1 <= N <= 20000, 0 <= Li <= 50000)

样例: 输入: N = 3,  L = {8, 5, 8}      输出: 34 (21 + 13)

思路:方法1. 根据 N 块木板长度,构建 Huffman 树。 时间复杂度:O(N2)

typedef long long ll;void solve(int L[], int N) {	ll cost = 0;	while (N > 1) {		int firMin = 0, secMin = 1;		if (L[firMin] > L[secMin]) swap(L[firMin], L[secMin]);		for (int i = 2; i < N; ++i) {			if (L[i] < L[firMin]) {				secMin = firMin;				firMin = i;			} else if (L[i] < L[secMin]) {				secMin = i;			}		}		int tmp = L[firMin] + L[secMin];		cost += tmp;		if(firMin == N-1) L[secMin] = tmp;		else {			L[firMin] = tmp;			L[secMin] = L[N-1];		}		N--;	}	cout << cost << endl;	/*printf("%lld\n", cost);*/}

 方法2:优先级队列 (基于堆实现)。 时间复杂度: O(NlogN)

typedef long long ll;void solve(int L[], int N) {	ll cost = 0;	/***  实现一个从小到大取值的优先级队列  ***/	priority_queue<int, vector<int>, greater<int> > que;	for (int i = 0; i < N; i++) {		que.push(L[i]);	}	while (que.size() > 1) {		int L1 = que.top();		que.pop();		int L2 = que.top();		que.pop();		cost += L1 + L2;		que.push(L1 + L2);	}	cout << cost << endl;	/*printf("%lld\n", cost);*/}

 

挑战程序设计竞赛选录:2