首页 > 代码库 > 蓝桥杯 历届试题 PREV-34 矩阵翻硬币

蓝桥杯 历届试题 PREV-34 矩阵翻硬币

历届试题 矩阵翻硬币  
时间限制:1.0s   内存限制:256.0MB
问题描述
  小明先把硬币摆成了一个 n 行 m 列的矩阵。

  随后,小明对每一个硬币分别进行一次 Q 操作。

  对第x行第y列的硬币进行 Q 操作的定义:将所有第 i*x 行,第 j*y 列的硬币进行翻转。

  其中i和j为任意使操作可行的正整数,行号和列号都是从1开始。

  当小明对所有硬币都进行了一次 Q 操作后,他发现了一个奇迹——所有硬币均为正面朝上。

  小明想知道最开始有多少枚硬币是反面朝上的。于是,他向他的好朋友小M寻求帮助。

  聪明的小M告诉小明,只需要对所有硬币再进行一次Q操作,即可恢复到最开始的状态。然而小明很懒,不愿意照做。于是小明希望你给出他更好的方法。帮他计算出答案。
输入格式
  输入数据包含一行,两个正整数 n m,含义见题目描述。
输出格式
  输出一个正整数,表示最开始有多少枚硬币是反面朝上的。
样例输入
2 3
样例输出
1
数据规模和约定
  对于10%的数据,n、m <= 10^3;
  对于20%的数据,n、m <= 10^7;
  对于40%的数据,n、m <= 10^15;
  对于10%的数据,n、m <= 10^1000(10的1000次方)。
 
题目解析:  

  1、从题目得知,如果一个硬币被翻转了奇数次后为正面朝上,那么它原始的状态一定是反面朝上。因此,我们需要统计所有翻转了奇数次硬币的个数。

  2、题目中的 “ 对第x行第y列的硬币进行 Q 操作的定义:将所有第 i*x 行,第 j*y 列的硬币进行翻转 ”。我们可以试着逆向思索,对于一个横坐标为X的硬币而言,我们翻转那些硬币会影响到它而使它翻转呢?由此我们可以得出,当翻转的硬币的横坐标为X的约数时,会影响到它的翻转。比如,X=9,那么翻转横坐标为 1、3、9的时候会影响到它的翻转。纵坐标情况同理。

    对于一个硬币,我们必须考虑到它的横坐标和纵坐标。假如,此硬币的横坐标翻转了5次,纵坐标翻转了6次,那么它总的翻转次数为 5 * 6 = 30 次。因此我们得到一个公式:总翻转次数 (count) = 横坐标翻转次数 (count_x) * 纵坐标翻转次数 (count_y)。我们一开始就指出,我们需要找到翻转了奇数次的硬币,因此,横坐标翻转次数和纵坐标翻转次数均为奇数时,总翻转次数才为奇数次。

  3、接下来我们需要考虑,哪些数有奇数个约数呢?答案是完全平方数。它为 1,4,9,16,25,36...... 即n的2次方,n为从1开始的正整数。

    从题目中得知,此时是一个 n * m 的矩阵,行号和列号都是从1开始。因此我们需要解决 1 到 n 之间完全平方数个数的问题。方法是求出sqrt(n),然后对它取整,即 1 - n 之间总共由于 (int)(sqrt(n)) 个完全平方数。因此,反面朝上硬币的个数为横纵坐标完全平方数个数相乘,即 (int)((sqrt(n)) * (sqrt(m))) 。

  4、由于此题的数据是超大规模的。因此,我们需要解决大数开方、大数相乘和大数比较等问题。

    通常使用 String 来接受键盘输入大数,因为它的长度比较容易控制。而使用 java.math.BigInteger 包中的 BigInteger 类来存储大数据。它的原则是,只要计算机有足够的的内存,它就能存储多长位数的数。

   大数开方: 牛顿逼近法。

        如果一个数的位数为偶数,那么这个数的方根就有 n/2 位,如果一个数的位数为奇数,这个数的方根就有 n/2 + 1 位。

        比如 num=1000 ,那么它的位数为 4 ,即方根就有 2 位。我们从方根的最高位进行枚举。

          先枚举出它的十位:

            10 * 10 = 100 < 1000

            20 * 20 = 400 < 1000

            30 * 30 = 900 < 1000

            40 * 40 = 1600 > 1000

          则这个根的十位为 3 。

          再枚举它的个位:

            31 * 31 = 961 < 1000

            32 * 32 = 1024 > 1000

          则这个根的个位为 1 。即这个根为 31 。

   大数相乘: 调用 java.math.* 包中的 multiply 方法。比如 bigNum1.multiply(bigNum2)

   大数比较: 调用 java.math.* 包中的 compareTo 方法,随第一个参数小于,等于或大于第二个参数返回负整数、零或正整数。比如 "2".compareTo ("3")

 

示例代码:

 1 import java.io.BufferedReader;
 2 import java.io.IOException;
 3 import java.io.InputStreamReader;
 4 import java.math.BigInteger;
 5 import java.util.Arrays;
 6 
 7 public class Main {
 8     public static void main(String[] args) throws IOException {
 9         BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
10         String[] str = br.readLine().split(" ");
11         String n =     str[0];
12         String m =     str[1];
13         BigInteger answer = (bigSqrt(n)).multiply(bigSqrt(m));   //sqrt(n) * sqrt(m)  1-n之间的完全平方数的个数 * 1-m之间完全平方数的个数
14         System.out.println(answer);
15     }
16     //  求1 - num 之间完全平方数的个数
17     private static BigInteger bigSqrt(String num) {
18         int length = num.length();     //被开方数的位数
19         int sqrt_len = 0;            //开方数的位数
20         if(length % 2 == 0){
21             sqrt_len = length / 2;
22         }else{
23             sqrt_len = length / 2 + 1;
24         }
25         BigInteger beSqrtNum = new BigInteger(num);
26         char[] ch = new char[sqrt_len];            //记录开方数,开房数在数组中逆序存放
27         Arrays.fill(ch, ‘0‘);                      //将ch数组初始化为‘0‘
28         for(int i = 0; i < sqrt_len; i++){         //从开房数的最高位开始计算,使 每一位都转化为 开方数的平方且不大于被开方数
29             for(char j = ‘1‘; j <= ‘9‘; j++ ){
30                 ch[i] = j;
31                 String s = String.valueOf(ch);
32                 BigInteger sqrtNum = new BigInteger(s);
33                 BigInteger squareNum = sqrtNum.multiply(sqrtNum);
34                 if(squareNum.compareTo(beSqrtNum) == 1){     //大数比较问题
35                     ch[i] -= 1;
36                     break;
37                 }
38             }
39         }
40         return new BigInteger(String.valueOf(ch));
41     }
42 }

 

                                                   

蓝桥杯 历届试题 PREV-34 矩阵翻硬币