首页 > 代码库 > UVA766 Sum of powers(1到n的自然数幂和 伯努利数)

UVA766 Sum of powers(1到n的自然数幂和 伯努利数)

自然数幂和:

 技术分享

技术分享(1)

 

伯努利数的递推式:

B0 = 1

技术分享

 

(要满足(1)式,求出Bn后将B1改为1 /2)

参考:https://en.wikipedia.org/wiki/Bernoulli_number

http://blog.csdn.net/acdreamers/article/details/38929067

 

使用分数类,代入求解

 

 

#include<cstdio>#include<iostream>#include<cstdlib>#include<cstring>#include<string>#include<algorithm>#include<map>#include<queue>#include<vector>#include<cmath>#include<utility>using namespace std;typedef long long LL;const int N = 25, INF = 0x3F3F3F3F;LL gcd(LL a, LL b){    while(b){        LL t = a % b;        a = b;        b = t;    }    return a;}LL lcm(LL a, LL b){    return a / gcd(a, b) * b;}struct frac{	LL x, y;	frac(){		x = 0;		y = 1;	}	frac(LL x1, LL y1){		x = x1;		y = y1;	}	frac operator*(const frac &tp)const{		LL a = x * tp.x;		LL b = y * tp.y;		LL d = gcd(a, b);		a /= d;		b /= d;		if(a >= 0 && b < 0){            a = -a;            b = -b;		}		return frac(a, b);	}	frac operator+(const frac &tp)const{		LL a = x * tp.y + tp.x * y;		LL b = y * tp.y;		LL d = gcd(a, b);		a /= d;		b /= d;		if(a >= 0 && b < 0){            a = -a;            b = -b;		}		return frac(a, b);	}}ans[N][N], bo[N];LL cm[N][N];void init(){	memset(cm, 0, sizeof(cm));	cm[0][0] = 1;	for(int i = 1; i < N; i++){		cm[i][0] = 1;		for(int j = 1; j <= i; j++){			cm[i][j] = cm[i - 1][j - 1] + cm[i - 1][j];		}	}	bo[0].x = 1, bo[0].y = 1;	for(int i = 1; i < N; i++){		bo[i].x = 0;		bo[i].y = 1;		for(int j = 0; j < i; j++){			bo[i] = bo[i] + frac(cm[i + 1][j], 1) * bo[j];		}		bo[i] = bo[i] * frac(-1, i + 1);	}	bo[1].x = 1; bo[1].y = 2;	for(int m = 0; m < N; m++){		for(int k = 0; k <= m; k++){			ans[m][m + 1 - k] = frac(cm[m + 1][k], 1) * bo[k] * frac(1, m + 1);		}		LL lc = ans[m][0].y;		for(int k = 1; k <= m; k++){			lc = lcm(ans[m][k].y, lc);		}		for(int k = 0; k <= m + 1; k++){            LL d = lc / ans[m][k].y;            ans[m][k].x *= d;            ans[m][k].y *= d;		}	}}int main(){    init();    int t;    cin >> t;    while(t--){    	int n;    	cin >>n;    	printf("%lld ", ans[n][0].y);    	for(int i = n + 1; i >= 0; i--){    		if(i == 0){    			printf("%lld\n", ans[n][i].x);    		}else{    			printf("%lld ", ans[n][i].x);    		}    	}        if(t){            printf("\n");        }    }    return 0;}

 

  

 

UVA766 Sum of powers(1到n的自然数幂和 伯努利数)