首页 > 代码库 > Bzoj3261 最大异或和

Bzoj3261 最大异或和

Time Limit: 10 Sec  Memory Limit: 512 MB
Submit: 1769  Solved: 747

Description

     

给定一个非负整数序列 {a},初始长度为 N。       
有   M个操作,有以下两种操作类型:
 
1 、A x:添加操作,表示在序列末尾添加一个数 x,序列的长度 N+1。
2 、Q l r x:询问操作,你需要找到一个位置 p,满足 l<=p<=r,使得:
 
a[p] xor a[p+1] xor ... xor a[N] xor x 最大,输出最大是多少。  

Input

第一行包含两个整数 N  ,M,含义如问题描述所示。   
第二行包含 N个非负整数,表示初始的序列 A 。 
 
接下来 M行,每行描述一个操作,格式如题面所述。   

Output

假设询问操作有 T个,则输出应该有 T行,每行一个整数表示询问的答案。

Sample Input

5 5
2 6 4 3 6
A 1
Q 3 5 4
A 4
Q 5 7 0
Q 3 6 6
对于测试点 1-2,N,M<=5 。

对于测试点 3-7,N,M<=80000 。
对于测试点 8-10,N,M<=300000 。

其中测试点 1, 3, 5, 7, 9保证没有修改操作。
对于 100% 的数据, 0<=a[i]<=10^7。

Sample Output

4
5
6

HINT

 

对于      100%  的数据,     0<=a[i]<=10^7  。

 

字符串 贪心 可持久化trie树

trie树也能可持久化,写法和主席树差不多,快来试试吧!

搞一个异或前缀和sum[],那么目标就是在区间内找到一个p,使得sum[p-1]^x^sum[n]最大

为了处理p在开头的情况,在最前面补一个0,所有数下标右移一位。

把每个数看成一个从高位到低位的二进制串,添加到可持久化trie树里

建好trie树以后,从根开始贪心走和当前这位相反的边即可。

 

 1 /*by SilverN*/ 2 #include<iostream> 3 #include<algorithm> 4 #include<cstring> 5 #include<cstdio> 6 #include<cmath> 7 #include<vector> 8 using namespace std; 9 const int mxn=300010;10 int read(){11     int x=0,f=1;char ch=getchar();12     while(ch<0 || ch>9){if(ch==-)f=-1;ch=getchar();}13     while(ch>=0 && ch<=9){x=x*10+ch-0;ch=getchar();}14     return x*f;15 }16 int rot[mxn<<1];17 struct Trie{18     int t[mxn*50][2];19     int id[mxn*50],cnt;20     void insert(int v,int y,int rt){21         rot[rt]=++cnt;22         int now=cnt;23         id[now]=rt;24         for(int i=23;i>=0;i--){25             int j=(v>>i)&1;26             t[now][j^1]=t[y][j^1];//继承旧树 27             t[now][j]=++cnt;//建立新枝 28             now=t[now][j];29             id[now]=rt; 30             y=t[y][j];31         }32         return;33     }34     int query(int l,int r,int val){35         int now=rot[r];36         int res=0;37         for(int i=23;i>=0;i--){38             if(id[now]<l)break;39             int j=(val>>i)&1;//val的值 40             if(id[t[now][j^1]]>=l)res|=(1<<i),j^=1;//贪心,能异则异 41             now=t[now][j];42         }43         return res;44     }45 }tr;46 int n,m;47 int a[mxn],smm=0;48 int main(){49     int i,j;50     n=read()+1;m=read();51     a[1]=0;52     for(i=2;i<=n;i++)a[i]=read();53     for(i=1;i<=n;i++){54         smm^=a[i];55         tr.insert(smm,rot[i-1],i);56     }57     char op[2];58     int l,r,x;59     while(m--){60         scanf("%s",op);61         if(op[0]==A){62             x=read();63             smm^=x;64             tr.insert(smm,rot[n],n+1);65             ++n;66         }67         else{68             l=read();r=read();x=read();69             int ans=tr.query(l,r,x^smm);70             printf("%d\n",ans);71         }72     }73     return 0;74 }

 

Bzoj3261 最大异或和