首页 > 代码库 > 最短路径Floyd详解-源代码
最短路径Floyd详解-源代码
//算法6.11 弗洛伊德算法 #include <iostream> using namespace std; #define MaxInt 32767 //表示极大值,即∞ #define MVNum 100 //最大顶点数 typedef char VerTexType; //假设顶点的数据类型为字符型 typedef int ArcType; //假设边的权值类型为整型 int Path[MVNum][MVNum]; //最短路径上顶点vj的前一顶点的序号 int D[MVNum][MVNum]; //记录顶点vi和vj之间的最短路径长度 //------------图的邻接矩阵--------------- typedef struct{ VerTexType vexs[MVNum]; //顶点表 ArcType arcs[MVNum][MVNum]; //邻接矩阵 int vexnum,arcnum; //图的当前点数和边数 }AMGraph; int LocateVex(AMGraph G , VerTexType v){ //确定点v在G中的位置 for(int i = 0; i < G.vexnum; ++i) if(G.vexs[i] == v) return i; return -1; }//LocateVex void CreateUDN(AMGraph &G){ //采用邻接矩阵表示法,创建有向网G int i , j , k; cout <<"请输入总顶点数,总边数,以空格隔开:"; cin >> G.vexnum >> G.arcnum; //输入总顶点数,总边数 cout << endl; cout << "输入点的名称,如a" << endl; for(i = 0; i < G.vexnum; ++i){ cout << "请输入第" << (i+1) << "个点的名称:"; cin >> G.vexs[i]; //依次输入点的信息 } cout << endl; for(i = 0; i < G.vexnum; ++i){ //初始化邻接矩阵,边的权值均置为极大值MaxInt for(j = 0; j < G.vexnum; ++j){ if(j != i) G.arcs[i][j] = MaxInt; else G.arcs[i][j] = 0; }//for }//for cout << "输入边依附的顶点及权值,如a b 3" << endl; for(k = 0; k < G.arcnum;++k){ //构造邻接矩阵 VerTexType v1 , v2; ArcType w; cout << "请输入第" << (k + 1) << "条边依附的顶点及权值:"; cin >> v1 >> v2 >> w; //输入一条边依附的顶点及权值 i = LocateVex(G, v1); j = LocateVex(G, v2); //确定v1和v2在G中的位置,即顶点数组的下标 G.arcs[i][j] = w; //边<v1, v2>的权值置为w }//for }//CreateUDN void ShortestPath_Floyed(AMGraph G){ //用Floyd算法求有向网G中各对顶点i和j之间的最短路径 int i , j , k ; for (i = 0; i < G.vexnum; ++i) //各对结点之间初始已知路径及距离 for(j = 0; j < G.vexnum; ++j){ D[i][j] = G.arcs[i][j]; if(D[i][j] < MaxInt && i != j) Path[i][j]=i; //如果i和j之间有弧,则将j的前驱置为i else Path [i][j] = -1; //如果i和j之间无弧,则将j的前驱置为-1 }//for for(k = 0; k < G.vexnum; ++k) for(i = 0; i < G.vexnum; ++i) for(j = 0; j < G.vexnum; ++j) if(D[i][k] + D[k][j] < D[i][j]){ //从i经k到j的一条路径更短 D[i][j] = D[i][k]+D[k][j]; //更新D[i][j] Path[i][j] = Path[k][j]; //更改j的前驱为k }//if }//ShortestPath_Floyed void DisplayPath(AMGraph G , int begin ,int temp ){ //显示最短路径 if(Path[begin][temp] != -1){ DisplayPath(G , begin ,Path[begin][temp]); cout << G.vexs[Path[begin][temp]] << "-->"; } }//DisplayPath void main(){ cout << "************算法6.11 弗洛伊德算法**************" << endl << endl; AMGraph G; char start , destination; int num_start , num_destination; CreateUDN(G); cout <<endl; cout << "有向网G创建完成!" << endl; ShortestPath_Floyed(G); cout << "请依次输入路径的起点与终点的名称:"; cin >> start >> destination; num_start = LocateVex(G , start); num_destination = LocateVex(G , destination); DisplayPath(G , num_start , num_destination); cout << G.vexs[num_destination] << endl; cout << "最短路径的长度为:" << D[num_start][num_destination] << endl; cout <<endl; }//main
最短路径Floyd详解-源代码
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。