首页 > 代码库 > HDU 1028 Ignatius and the Princess III dp
HDU 1028 Ignatius and the Princess III dp
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1028
一道经典题,也是算法设计与分析上的一道题,可以用递推,动态规划,母函数求解,我用的是动态规划,也就是递推的变形。
dp[i][j]表示数i的划分中最大数不超过j的划分的个数
状态转移方程:
if(j > i)
dp[i][j] = dp[i][i];
if(j == i)
dp[i][j] = dp[i][j - 1] + 1;
if(j < i)
dp[i][j] = dp[i][j - 1] + dp[i - j][j];
当然前提是dp[x][1]=1
对于j<i的时候的转移方程可以这么理解:
如果我要求dp[5][3], 那么我可以先加上dp[5][2]也就是最大数不超过2的划分;然后接下来我要加上的若干个划分每个划分中至少包括一个3,而且最大的是3,那么对于这若干个划分任意一个划分去掉3的话,就变成了5-3的最大数不超过3的划分的个数-->即有dp[5][3] = dp[5][2]+dp[2][3].
代码:
1 #define maxn 135 2 int dp[maxn][maxn]; 3 4 int dowork(int x){ 5 for(int i = 1; i <= x; i++) 6 dp[i][1] = 1; 7 for(int i = 1; i <= x; i++) 8 dp[1][i] = 1; 9 for(int i = 2; i <= x; i++){ 10 for(int j = 2; j <= x; j++){ 11 if(j > i) 12 dp[i][j] = dp[i][i]; 13 if(j == i) 14 dp[i][j] = dp[i][j - 1] + 1; 15 if(j < i) 16 dp[i][j] = dp[i][j - 1] + dp[i - j][j]; 17 18 //printf("dp(%d, %d):%d ", i, j, dp[i][j]); 19 } 20 //puts(""); 21 } 22 return dp[x][x]; 23 } 24 25 int main(){ 26 int n; 27 while(scanf("%d", &n) != EOF){ 28 memset(dp, 0, sizeof(dp)); 29 printf("%d\n", dowork(n)); 30 } 31 }
题目:
Ignatius and the Princess III
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 21162 Accepted Submission(s): 14776
Problem Description
"Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says.
"The second problem is, given an positive integer N, we define an equation like this:
N=a[1]+a[2]+a[3]+...+a[m];
a[i]>0,1<=m<=N;
My question is how many different equations you can find for a given N.
For example, assume N is 4, we can find:
4 = 4;
4 = 3 + 1;
4 = 2 + 2;
4 = 2 + 1 + 1;
4 = 1 + 1 + 1 + 1;
so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"
"The second problem is, given an positive integer N, we define an equation like this:
N=a[1]+a[2]+a[3]+...+a[m];
a[i]>0,1<=m<=N;
My question is how many different equations you can find for a given N.
For example, assume N is 4, we can find:
4 = 4;
4 = 3 + 1;
4 = 2 + 2;
4 = 2 + 1 + 1;
4 = 1 + 1 + 1 + 1;
so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"
Input
The input contains several test cases. Each test case contains a positive integer N(1<=N<=120) which is mentioned above. The input is terminated by the end of file.
Output
For each test case, you have to output a line contains an integer P which indicate the different equations you have found.
Sample Input
4
10
20
Sample Output
5
42
627
HDU 1028 Ignatius and the Princess III dp
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。