首页 > 代码库 > 平面点集的最小包围圆 hdu 3932
平面点集的最小包围圆 hdu 3932
最小覆盖圆算法地址:http://soft.cs.tsinghua.edu.cn/blog/?q=node/1066
平面点集的最小包围圆
1、 问题背景
考察固定在工作平台上的一直机械手,要捡起散落在不同位置的多个零件,并送到别的地方。那么,这只机械手的底座应该选在哪里呢?根据直觉,应该选在机械手需够着的那些位置的“中心”。准确地讲,也就是包围这些点的那个最小圆的圆心----该位置的好处是,可使机械手的底座到它需要够着的那些点的最大距离最小化。于是可得如下问题:给定由平面上n个点所组成的一个集合P(对应于机械手需要够着的工作平台的那些位置),试找出P的最小包围圆(smallest enclosing disc)----亦即,包含P中所有点、半径最小的那个圆。这个最小包围圆必然是唯一的。
2、算法及原理
算法介绍:我们本次算法的设计是基于这样一个简单直观的性质:在既定的给定点条件下,如果引入一张新的半平面,只要此前的最优解顶点(即唯一确定最小包围圆的几个关键顶点)能够包含于其中,则不必对此最优解进行修改,亦即此亦为新点集的最优解;否则,新的最优解顶点必然位于这个新的半空间的边界上。
定理可以通过反证法证明。
于是,基于此性质,我们便可得到一个类似于线性规划算法的随机增量式算法。定义Di为相对于pi的最小包围圆。此算法实现的关键在于对于pi?Di-1时的处理。显然,如果pi∈Di-1,则Di= Di-1;否则,需要对Di另外更新。而且,Di的组成必然包含了pi;因此,此种情况下的最小包围圆是过pi点且覆盖点集{ p1 ,p2 ,p3 ……pi-1}的最小包围圆。则仿照上述处理的思路,Di={ p1 ,pi },逐个判断点集{ p2 ,p3 ……pi-1 },如果存在pj? Di,则Di={pj,pi }。同时,再依次对点集{ p1 ,p2 ,p3 ……pj-1 }判断是否满足pk∈Di,若有不满足,则Di={pk ,pj,pi }。由于,三点唯一地确定一个圆,故而,只需在此基础上判断其他的点是否位于此包围圆内,不停地更新pk。当最内层循环完成时,退出循环,转而更新pj;当次内层循环结束时,退出循环,更新pi。当i=n时,表明对所有的顶点均已处理过 ,此时的Dn即表示覆盖了给定n个点的最小包围圆。
平面点集的最小包围圆 hdu 3932