首页 > 代码库 > HDU 1978-How many ways(记忆化搜索)
HDU 1978-How many ways(记忆化搜索)
How many ways
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 3105 Accepted Submission(s): 1823
Problem Description
这是一个简单的生存游戏,你控制一个机器人从一个棋盘的起始点(1,1)走到棋盘的终点(n,m)。游戏的规则描述如下:
1.机器人一开始在棋盘的起始点并有起始点所标有的能量。
2.机器人只能向右或者向下走,并且每走一步消耗一单位能量。
3.机器人不能在原地停留。
4.当机器人选择了一条可行路径后,当他走到这条路径的终点时,他将只有终点所标记的能量。
如上图,机器人一开始在(1,1)点,并拥有4单位能量,蓝色方块表示他所能到达的点,如果他在这次路径选择中选择的终点是(2,4)
点,当他到达(2,4)点时将拥有1单位的能量,并开始下一次路径选择,直到到达(6,6)点。
我们的问题是机器人有多少种方式从起点走到终点。这可能是一个很大的数,输出的结果对10000取模。
1.机器人一开始在棋盘的起始点并有起始点所标有的能量。
2.机器人只能向右或者向下走,并且每走一步消耗一单位能量。
3.机器人不能在原地停留。
4.当机器人选择了一条可行路径后,当他走到这条路径的终点时,他将只有终点所标记的能量。
如上图,机器人一开始在(1,1)点,并拥有4单位能量,蓝色方块表示他所能到达的点,如果他在这次路径选择中选择的终点是(2,4)
点,当他到达(2,4)点时将拥有1单位的能量,并开始下一次路径选择,直到到达(6,6)点。
我们的问题是机器人有多少种方式从起点走到终点。这可能是一个很大的数,输出的结果对10000取模。
Input
第一行输入一个整数T,表示数据的组数。
对于每一组数据第一行输入两个整数n,m(1 <= n,m <= 100)。表示棋盘的大小。接下来输入n行,每行m个整数e(0 <= e < 20)。
对于每一组数据第一行输入两个整数n,m(1 <= n,m <= 100)。表示棋盘的大小。接下来输入n行,每行m个整数e(0 <= e < 20)。
Output
对于每一组数据输出方式总数对10000取模的结果.
Sample Input
1 6 6 4 5 6 6 4 3 2 2 3 1 7 2 1 1 4 6 2 7 5 8 4 3 9 5 7 6 6 2 1 5 3 1 1 3 7 2
Sample Output
3948从起始点根据能量枚举所有可能到达的点,满足 i+j<=ma[x][y] 然后路径方案保存下来。记忆化入门#include <algorithm> #include <iostream> #include <cstring> #include <cstdlib> #include <string> #include <cctype> #include <vector> #include <cstdio> #include <cmath> #include <deque> #include <stack> #include <map> #include <set> #define ll long long #define maxn 116 #define pp pair<int,int> #define INF 0x3f3f3f3f #define max(x,y) ( ((x) > (y)) ? (x) : (y) ) #define min(x,y) ( ((x) > (y)) ? (y) : (x) ) using namespace std; int n,m,dp[102][102],ma[102][102]; int dfs(int x,int y) { if(x==n&&y==m) return 1; if(dp[x][y]!=-1) return dp[x][y]; dp[x][y]=0; int s=ma[x][y]; for(int i=0;i<=s;i++) { for(int j=0;j<=s-i;j++) { if(x+i>=1&&x+i<=n&&y+j>=1&&y+j<=m) dp[x][y]=(dp[x][y]+dfs(x+i,y+j))%10000; } } return dp[x][y]; } int main() { int T; scanf("%d",&T); while(T--) { memset(dp,-1,sizeof(dp)); scanf("%d%d",&n,&m); for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) scanf("%d",&ma[i][j]); printf("%d\n",dfs(1,1)%10000); } return 0; }
HDU 1978-How many ways(记忆化搜索)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。