首页 > 代码库 > POJ 1637 Sightseeing tour (混合图欧拉回路)
POJ 1637 Sightseeing tour (混合图欧拉回路)
Sightseeing tour
Description
The city executive board in Lund wants to construct a sightseeing tour by bus in Lund, so that tourists can see every corner of the beautiful city. They want to construct the tour so that every street in the city is visited exactly once. The bus should also start and end at the same junction. As in any city, the streets are either one-way or two-way, traffic rules that must be obeyed by the tour bus. Help the executive board and determine if it‘s possible to construct a sightseeing tour under these constraints.
Input
On the first line of the input is a single positive integer n, telling the number of test scenarios to follow. Each scenario begins with a line containing two positive integers m and s, 1 <= m <= 200,1 <= s <= 1000 being the number of junctions and streets, respectively. The following s lines contain the streets. Each street is described with three integers, xi, yi, and di, 1 <= xi,yi <= m, 0 <= di <= 1, where xi and yi are the junctions connected by a street. If di=1, then the street is a one-way street (going from xi to yi), otherwise it‘s a two-way street. You may assume that there exists a junction from where all other junctions can be reached.
Output
For each scenario, output one line containing the text "possible" or "impossible", whether or not it‘s possible to construct a sightseeing tour.
Sample Input
4 5 8 2 1 0 1 3 0 4 1 1 1 5 0 5 4 1 3 4 0 4 2 1 2 2 0 4 4 1 2 1 2 3 0 3 4 0 1 4 1 3 3 1 2 0 2 3 0 3 2 0 3 4 1 2 0 2 3 1 1 2 0 3 2 0
Sample Output
possible impossible impossible possible
#include<cstdio> #include<vector> #include<queue> #include<cstring> using namespace std; const int INF=0x3f3f3f3f,MAXN=205; int in[MAXN],out[MAXN],m,s; struct Edge { int from,to,cap,flow; Edge(){} Edge(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f){}; }; struct dinic { int s,t; vector<Edge>edges; vector<int>G[MAXN]; bool vis[MAXN]; int d[MAXN]; int cur[MAXN]; void init() { for(int i=0;i<=m+1;i++)G[i].clear(); edges.clear(); memset(in,0,sizeof(in)); memset(out,0,sizeof(out)); } void addedge(int from,int to,int cap) { edges.push_back((Edge){from,to,cap,0}); edges.push_back((Edge){to,from,0,0}); int m=edges.size(); G[from].push_back(m-2); G[to].push_back(m-1); } bool bfs() { memset(vis,0,sizeof(vis)); queue<int>q; q.push(s); d[s]=0; vis[s]=1; while(!q.empty()) { int x=q.front();q.pop(); for(int i=0;i<G[x].size();i++) { Edge& e=edges[G[x][i]]; if(!vis[e.to]&&e.cap>e.flow) { vis[e.to]=1; d[e.to]=d[x]+1; q.push(e.to); } } } return vis[t]; } int dfs(int x,int a) { if(x==t||a==0)return a; int flow=0,f; for(int& i=cur[x];i<G[x].size();i++) { Edge& e=edges[G[x][i]]; if(d[x]+1==d[e.to]&&(f=dfs(e.to,min(a,e.cap-e.flow)))>0) { e.flow+=f; edges[G[x][i]^1].flow-=f; flow+=f; a-=f; if(a==0)break; } } return flow; } int maxflow(int s,int t) { this->s=s,this->t=t; int flow=0; while(bfs()) { memset(cur,0,sizeof(cur)); flow+=dfs(s,INF); } return flow; } }dc; int main() { int T; scanf("%d",&T); while(T--) { dc.init(); scanf("%d%d",&m,&s); for(int i=0;i<s;i++) { int u,v,d; scanf("%d%d%d",&u,&v,&d); out[u]++,in[v]++; if(d==0)dc.addedge(u,v,1); } bool ok=1; int sum=0; for(int i=1;i<=m;i++) if((in[i]-out[i])%2==1) { ok=0; break; } if(!ok){puts("impossible");continue;} for(int i=1;i<=m;i++) { if(in[i]<out[i]) dc.addedge(0,i,(out[i]-in[i])/2); else if(in[i]>out[i]) { dc.addedge(i,m+1,(in[i]-out[i])/2); sum+=(in[i]-out[i])/2; } } puts(sum==dc.maxflow(0,m+1)?"possible":"impossible"); } return 0; }
POJ 1637 Sightseeing tour (混合图欧拉回路)
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。