首页 > 代码库 > BZOJ 3757 苹果树 树上莫队
BZOJ 3757 苹果树 树上莫队
题目大意:给出一棵树,问任意两点之间有多少种不同的颜色,一个人可能会有色盲,会将A和B当成一种颜色。
思路:比较裸的树上莫队,写出来之后,很慢,怀疑是分块的缘故,然后果断找了当年比赛的标称交上去,瞬间rk1,大概看了一眼,他好像是直接用DFS序+曼哈顿距离最小生成树搞的,为什么会比分块快?
昨天下午看到这个题之后就一直在研究树上莫队的正确姿势,然后先写了树分块,后来看了很多牛人的SPOJ COT2的题解,后来又和同学探讨了好久才弄明白。
首先先将树分块,然后把区间排序,按照第一权值为左端点所在块的编号,右端点在DFS序中的位置排序,关键是转移。有一种vfk的靠谱一点的方法。对于任意一个状态,在树上表示[l,r]的路径,目前的状态只存{x|x∈[l,r],x != LCA(l,r)}这些点的颜色,这样就大概有两种情况,一种是两条链,没有中间的LCA,或者是一条链,没有顶端的LCA。然后一直这样转移,例如从[l,r]转移到[x,y]的时候,我们只需要暴力从l->x,y->r,注意记录一个标记数组,在转移的时候把路径上的所有点取反。这样转移之后还是{x|x∈[l,r],x != LCA(l,r)}这些点。统计答案的时候将LCA加回来,然后再删掉。
注意:找LCA要倍增!千万别像我以为写不写倍增都是O(n)然后T一晚上。。。
CODE:
#include <cmath> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #define MAX 100100 using namespace std; inline char GetChar() { static const int L = (1 << 15); static char buffer[L],*S = buffer,*T = buffer; if(S == T) { T = (S = buffer) + fread(buffer,1,L,stdin); if(S == T) return EOF; } return *S++; } inline int GetInt() { int c; while(!isdigit(c = GetChar())); int x = c - '0'; while(isdigit(c = GetChar())) x = (x << 1) + (x << 3) + c - '0'; return x; } int block_size,belong[MAX],blocks; int pos[MAX],cnt; int size[MAX],root; struct Ask{ int x,y,_id; int mixed,_mixed; bool operator <(const Ask &a)const { if(belong[x] == belong[a.x]) return pos[y] < pos[a.y]; return belong[x] < belong[a.x]; } void Read(int p) { x = GetInt(),y = GetInt(); mixed = GetInt(),_mixed = GetInt(); if(pos[x] > pos[y]) swap(x,y); _id = p; } }ask[MAX << 1]; int points,asks; int head[MAX],total; int _next[MAX << 1],aim[MAX << 1]; int deep[MAX],father[MAX][20]; int src[MAX]; int num[MAX],colors; bool v[MAX]; int ans[MAX]; inline void Add(int x,int y) { _next[++total] = head[x]; aim[total] = y; head[x] = total; } void DFS(int x,int last) { father[x][0] = last; pos[x] = ++cnt; deep[x] = deep[last] + 1; for(int i = head[x]; i; i = _next[i]) { if(aim[i] == last) continue; if(size[belong[x]] < block_size) ++size[belong[x]],belong[aim[i]] = belong[x]; else ++size[++blocks],belong[aim[i]] = blocks; DFS(aim[i],x); } } inline void Change(int x,int c) { if(!num[x]) ++num[x],++colors; else if(num[x] == 1 && c == -1) --num[x],--colors; else num[x] += c; } inline int GetLCA(int x,int y) { if(deep[x] < deep[y]) swap(x,y); for(int i = 19; ~i; --i) if(deep[father[x][i]] >= deep[y]) x = father[x][i]; if(x == y) return x; for(int i = 19; ~i; --i) if(father[x][i] != father[y][i]) x = father[x][i],y = father[y][i]; return father[x][0]; } inline void Work(int x,int y,int lca) { for(; x != lca; x = father[x][0]) { Change(src[x],v[x] ? -1:1); v[x] ^= 1; } for(; y != lca; y = father[y][0]) { Change(src[y],v[y] ? -1:1); v[y] ^= 1; } } inline void Solve(int p) { static int l = root,r = root,lca; Work(l,ask[p].x,GetLCA(l,ask[p].x)); Work(r,ask[p].y,GetLCA(r,ask[p].y)); l = ask[p].x,r = ask[p].y; lca = GetLCA(l,r); Change(src[lca],1); ans[ask[p]._id] = colors; if(ask[p].mixed != ask[p]._mixed) ans[ask[p]._id] -= num[ask[p].mixed] && num[ask[p]._mixed]; Change(src[lca],-1); } inline void SparseTable() { for(int j = 1; j < 20; ++j) for(int i = 1; i <= points; ++i) father[i][j] = father[father[i][j - 1]][j - 1]; } int main() { //freopen("apple.in","r",stdin); //freopen("apple.out","w",stdout); cin >> points >> asks; for(int i = 1; i <= points; ++i) src[i] = GetInt(); for(int x,y,i = 1; i <= points; ++i) { x = GetInt(),y = GetInt(); Add(x,y),Add(y,x); } block_size = sqrt(points + 1); size[1] = 1; belong[0] = 1; blocks = 1; DFS(0,MAX - 1); root = aim[head[0]]; SparseTable(); for(int i = 1; i <= asks; ++i) ask[i].Read(i); sort(ask + 1,ask + asks + 1); for(int i = 1; i <= asks; ++i) Solve(i); for(int i = 1; i <= asks; ++i) printf("%d\n",ans[i]); return 0; }
BZOJ 3757 苹果树 树上莫队
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。