首页 > 代码库 > 【ML】求解线性回归方程
【ML】求解线性回归方程
参考资料:openclassroom
线性回归(Linear Regression)
为了拟合10岁以下儿童年龄(x1)与身高(y)之间的关系,我们假设一个关于x的函数h(x):
h(x) = Θ0+Θ1*x1 = Θ0*x0+Θ1*x1 = ΘT*x (其中x0=1, x=[x0, x1])
我们的目的是求出Θ,使得h(x)接近真实的y。
因此我们需要在m个训练样本(x,y)上使得h(x)与y的平方误差最小。
也就是最小化J(Θ) =1/(2*m) * ∑i(h(x(i))-y(i))2
分母上2的作用是抵消求导时平方项产生的2.
解法一:Gradient Descent(梯度下降)
Θ朝着J(Θ)的梯度方向(即J(Θ)关于Θ的偏导)前进,直到J(Θ)达到极小点(线性回归中J(Θ)为碗状,极小点即最小点)
α为步长,由于J(Θ)关于Θ的偏导会逐渐变小,因此α无需调整。
同时执行以下两个更新公式,直到收敛。
注意:同时执行。而不是求出一个代入另一个的迭代执行。
Θ0 = Θ0-α/m*∑i(h(x(i))-y(i))x0(i)
Θ1 = Θ1-α/m*∑i(h(x(i))-y(i))x1(i)
解法二:Normal Equations
J(Θ)关于Θ求导为0,联列方程组求解得:
Θ = (XTX)-1XTY (其中X的行向量为x(i),Y每个元素为y(i))
注意:(XTX)-1不一定有意义
case 1: 每个x(i)样本的维度为n。当m <= n时,XTX 非满秩,为奇异矩阵,无逆元。
case 2: x(i)特征线性相关,即X列向量线性相关时,XTX 非满秩,为奇异矩阵,无逆元。
【ML】求解线性回归方程
声明:以上内容来自用户投稿及互联网公开渠道收集整理发布,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任,若内容有误或涉及侵权可进行投诉: 投诉/举报 工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。